A248080 Decimal expansion of P_0(xi), the maximum limiting probability that a random n-permutation has no cycle exceeding a given length.
0, 9, 8, 7, 1, 1, 7, 5, 4, 4, 8, 0, 7, 1, 4, 6, 9, 2, 4, 9, 3, 7, 2, 1, 3, 0, 8, 2, 3, 7, 0, 2, 0, 6, 7, 9, 9, 3, 3, 3, 3, 3, 3, 5, 4, 7, 8, 0, 8, 4, 4, 0, 0, 0, 2, 5, 6, 6, 9, 7, 9, 0, 8, 3, 6, 2, 2, 5, 2, 5, 3, 6, 4, 2, 7, 4, 0, 6, 3, 0, 1, 5, 8, 6, 2, 6, 3, 0, 0, 2, 1, 5, 7, 5, 9, 2, 4, 5, 4, 6, 1, 6
Offset: 0
Examples
0.098711754480714692493721308237020679933333354780844...
Links
- Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020, p. 29.
- Michael Lugo, The number of cycles of specified normalized length in permutations, arXiv:0909.2909 [math.CO], 2009.
Programs
-
Mathematica
xi = 1/(1 + Sqrt[E]); P0[x_] := Log[x]^2/2 + Log[x] + PolyLog[2, x] - Pi^2/12 + 1; Join[{0}, RealDigits[P0[xi], 10, 101] // First]
-
Python
from mpmath import * mp.dps=102 xi=1/(1 + sqrt(e)) C = log(xi)**2/2 + log(xi) + polylog(2, xi) - pi**2/12 + 1 print([int(n) for n in list(str(C)[2:-1])]) # Indranil Ghosh, Jul 04 2017
Formula
(1/2)*log(1 + sqrt(e))^2 - log(1 + sqrt(e)) + Li_2(1/(1 + sqrt(e))) - Pi^2/12 + 1.