This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248098 #20 Jan 05 2025 19:51:40 %S A248098 1,1,1,4,7,13,25,46,85,157,289,532,979,1801,3313,6094,11209,20617, %T A248098 37921,69748,128287,235957,433993,798238,1468189,2700421,4966849, %U A248098 9135460,16802731,30905041,56843233,104551006,192299281,353693521 %N A248098 a(n) = 1 + a(n-1) + a(n-2) + a(n-3) if n>=4; a(1) = a(2) = a(3) = 1. %C A248098 Number of vertices in the Fibonacci ternary tree T(n). The Fibonacci ternary tree T(n) is defined inductively: T(1), T(2), T(3) consist of only a root node, while for n>=4, T(n) consists of a root node with 3 ordered children T(n-1), T(n-2), T(n-3) from left to right. See the Chang reference. %C A248098 The number of leaves in the Fibonacci ternary tree T(n) is the tribonacci number A000213(n-1). %C A248098 In general, adding a constant to each successive term of a third-order linear recurrence with signature (x,y,z) results in a fourth-order recurrence with signature (x+1, y-x, z-y, -z). - _Gary Detlefs_, Jul 20 2023 %H A248098 Reinhard Zumkeller, <a href="/A248098/b248098.txt">Table of n, a(n) for n = 1..1000</a> %H A248098 D. K. Chang, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/24-3/chang.pdf">On Fibonacci k-ary trees</a>, The Fibonacci Quarterly, Volume 24, Number 3, August 1986, 258-262. %H A248098 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,0,-1). %F A248098 G.f. = z*(1-z-z^2+2*z^3)/((1-z)*(1-z-z^2-z^3)). %p A248098 a[1]:=1: a[2]:=1: a[3]:=1: for n from 4 to 40 do a[n] := 1+a[n-1]+a[n-2]+a[n-3] end do: seq(a[n], n=1..40); %p A248098 g:=z*(1-z^2+2*z^3-z)/((1-z)*(1-z-z^2-z^3)): gser:=series(g,z=0,45): seq(coeff(gser,z,n), n=1..40); %o A248098 (Haskell) %o A248098 a248098 n = a248098_list !! (n-1) %o A248098 a248098_list = 1 : 1 : 1 : map (+ 1) (zipWith3 (((+) .) . (+)) %o A248098 a248098_list (tail a248098_list) (drop 2 a248098_list)) %o A248098 -- _Reinhard Zumkeller_, Dec 29 2014 %Y A248098 Cf. A000213. %Y A248098 Cf. A213967. %K A248098 nonn,easy %O A248098 1,4 %A A248098 _Emeric Deutsch_, Dec 28 2014