A248100 Number of ordered trees with n edges such that non-leaf vertices at even levels have outdegree 1 and those at odd levels have outdegree 2.
1, 1, 0, 1, 2, 1, 2, 6, 6, 7, 20, 30, 34, 75, 140, 182, 322, 644, 972, 1554, 3024, 5091, 8052, 14784, 26378, 43032, 75504, 136994, 232232, 399399, 720356, 1257256, 2161874, 3852576, 6831552, 11858418, 20949304, 37350768, 65554788, 115476376, 205872448
Offset: 0
Links
- Andrei Asinowski, Cyril Banderier, Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, (2019).
Crossrefs
Formula
G.f.: g(x) satisfies g = 1 + x + x^3*g^2. Sketch of proof (the symbolic method): the set S of ordered trees such that non-leaf vertices at even levels have outdegree 1 and those at odd levels have outdegree 2 consists of the one-point tree, the tree | , and the trees obtained from the tree Y (root at bottom) by attaching at each of the two leaves a tree from the set S (not necessarily the same). For the g.f. g(x) of S, x marking edges, this "decomposition picture" of S translates at once into the given equation.
G.f.: (1-sqrt(1-4*x^3-4*x^4))/(2*x^3).
a(n) = a(0)*a(n-3)+a(1)*a(n-4)+...+a(n-3)*a(0) for n>=3.
D-finite with recurrence 5*(n+3)*a(n) +4*(-n-2)*a(n-1) +4*(-n-1)*a(n-2) +10*(-2*n+3)*a(n-3) +4*(-n+5)*a(n-4) +8*(4*n-15)*a(n-5) +16*(n-5)*a(n-6)=0. - R. J. Mathar, Oct 07 2016
Comments