This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248104 #7 Jan 26 2019 20:00:56 %S A248104 4,11,16,19,28,35,44,47,52,59,64,67,76,79,84,91,100,107,112,115,124, %T A248104 131,140,143,148,155,164,171,176,179,188,191,196,203,208,211,220,227, %U A248104 236,239,244,251,256,259,268,271,276,283,292,299,304,307,316,319,324 %N A248104 Positions of 0,1,0 in the Thue-Morse sequence (A010060). %C A248104 Every positive integer lies in exactly one of these six sequences: %C A248104 A248056 (positions of 0,0,1) %C A248104 A248104 (positions of 0,1,0) %C A248104 A157970 (positions of 1,0,0) %C A248104 A157971 (positions of 0,1,1) %C A248104 A248105 (positions of 1,0,1) %C A248104 A248057 (positions of 1,1,0) %C A248104 The terms of the sequence are the positions of the mean of the positions of the three numbers 0, 1, 0. - _Harvey P. Dale_, Jan 26 2019 %H A248104 Clark Kimberling, <a href="/A248104/b248104.txt">Table of n, a(n) for n = 1..1000</a> %e A248104 Thue-Morse sequence: 0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,..., so that a(1) = 4 and a(2) = 11. %t A248104 z = 600; u = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {1, 0}}] &, {0}, 13]; v = Rest[u]; w = Rest[v]; t1 = Table[If[u[[n]] == 0 && v[[n]] == 0 && w[[n]] == 1, 1, 0], {n, 1, z}]; %t A248104 t2 = Table[If[u[[n]] == 0 && v[[n]] == 1 && w[[n]] == 0, 1, 0], {n, 1, z}]; %t A248104 t3 = Table[If[u[[n]] == 1 && v[[n]] == 0 && w[[n]] == 0, 1, 0], {n, 1, z}]; %t A248104 t4 = Table[If[u[[n]] == 0 && v[[n]] == 1 && w[[n]] == 1, 1, 0], {n, 1, z}]; %t A248104 t5 = Table[If[u[[n]] == 1 && v[[n]] == 0 && w[[n]] == 1, 1, 0], {n, 1, z}]; %t A248104 t6 = Table[If[u[[n]] == 1 && v[[n]] == 1 && w[[n]] == 0, 1, 0], {n, 1, z}]; %t A248104 Flatten[Position[t1, 1]] (* A248056 *) %t A248104 Flatten[Position[t2, 1]] (* A248104 *) %t A248104 Flatten[Position[t3, 1]] (* A157970 *) %t A248104 Flatten[Position[t4, 1]] (* A157971 *) %t A248104 Flatten[Position[t5, 1]] (* A248105 *) %t A248104 Flatten[Position[t6, 1]] (* A248057 *) %t A248104 Mean/@SequencePosition[ThueMorse[Range[400]],{0,1,0}] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Jan 26 2019 *) %Y A248104 Cf. A010060, A248056, A157970, A157971, A248105, A248057. %K A248104 nonn,easy %O A248104 1,1 %A A248104 _Clark Kimberling_, Oct 01 2014