cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248107 Number of isomorphism classes of affine Mendelsohn triple systems of order n.

This page as a plain text file.
%I A248107 #43 Apr 17 2023 10:17:19
%S A248107 1,0,1,1,0,0,2,0,2,0,0,1,2,0,0,2,0,0,2,0,2,0,0,0,1,0,3,2,0,0,2,0,0,0,
%T A248107 0,2,2,0,2,0,0,0,2,0,0,0,0,2,5,0,0,2,0,0,0,0,2,0,0,0,2,0,4,3,0,0,2,0,
%U A248107 0,0,0,0,2,0,1,2,0,0,2,0,5,0,0,2,0
%N A248107 Number of isomorphism classes of affine Mendelsohn triple systems of order n.
%C A248107 A Mendelsohn triple system is affine if the associated quasigroup is affine, i.e, given by x*y=(1-f)(x)+f(y) over an abelian group (A,+) with an automorphism f.
%C A248107 For Steiner triple systems, the enumeration is settled by the following observation: a Steiner triple system is affine if and only if A=Z_3^n and f(x)=-x.
%C A248107 The existence spectrum (i.e., n such that a(n)>0) is A003136.
%C A248107 Comment from _David Stanovsky_, Mar 19 2022, added by _N. J. A. Sloane_, Mar 20 2022 (Start)
%C A248107 This is the sequence a(n) defined in the Donovan et al. paper.
%C A248107 The b(n) sequence defined there gives the number of non-affine systems.
%C A248107 The first 728 values of b(n) are now known: they are all zeros, except b(81) = 2, b(243) = 6, b(324) = 2, b(567)=4. We do not know b(729).
%C A248107 The reason is the following: it follows from the Galkin-Fischer-Smith theorem that, for n = m * 3^d, m not divisible by 3, we have b(n) = a(m) * b(3^d).
%C A248107 At the time of writing the paper, we could use known data about commutative Moufang loops to determine b(1) = b(3) = b(9) = b(27) = 0, and b(81) = 2. Later we managed to develop smarter enumeration methods that allowed us to determine b(243)=6: see Jedlička et al. (2007).
%C A248107 Since so many of the initial values of b(n), this does not have its own OEIS entry. (End)
%C A248107 Conjecture: This is the same sequences as A352561.(Note that A352561 has an explicit Dirichlet generating function.) - _N. J. A. Sloane_, Mar 21 2022
%H A248107 David Stanovsky, <a href="/A248107/b248107.txt">Table of n, a(n) for n = 1..1023</a>
%H A248107 Diane M. Donovan, Terry S. Griggs, Thomas A. McCourt, Jakub Opršal, David Stanovský, <a href="http://arxiv.org/abs/1411.5194">Distributive and anti-distributive Mendelsohn triple systems</a>, arXiv:1411.5194 [math.CO], 2014. [Published in Canad. Math. Bull. Vol. 59 (1), 2016 pp. 36-49.] See a(n) on page 9 of arXiv version.
%H A248107 Přemysl Jedlička, David Stanovský, and Petr Vojtěchovský, <a href="https://arxiv.org/abs/1603.00608">Trimedial and distributive quasigroups of order 243</a>, arXiv:1603.00608 [math.GR], 2016.
%H A248107 Přemysl Jedlička, David Stanovský, and Petr Vojtěchovský, <a href="https://doi.org/10.1016/j.disc.2016.08.022">Trimedial and distributive quasigroups of order 243</a>, Discrete Math. 340/3 (2017), 404--415.
%o A248107 (GAP)
%o A248107 # For brevity, I do not exploit multiplicativity of a(n) here.
%o A248107 a := function(n)
%o A248107     local count, gg, g, autg, conj, f, b, x;
%o A248107     count := 0;
%o A248107     for gg in AllGroups(Size, n, IsAbelian, true) do
%o A248107         g := Image(IsomorphismPermGroup(gg), gg);
%o A248107         autg := AutomorphismGroup(g);
%o A248107         conj := List(ConjugacyClasses(autg), x->Representative(x));
%o A248107         for f in conj do
%o A248107             b := true;
%o A248107             for x in g do
%o A248107                 if not
%o A248107                    Image(f, Image(f, x))*Image(f, x^-1)*x = ()
%o A248107                 then b := false; break;
%o A248107                 fi;
%o A248107             od;
%o A248107             if b then count := count + 1; fi;
%o A248107         od;
%o A248107     od;
%o A248107     return count;
%o A248107 end;
%Y A248107 Cf. A003136, A352550, A352561.
%K A248107 nonn,mult
%O A248107 1,7
%A A248107 _David Stanovsky_, Oct 01 2014