cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248111 Least k such that ((k+2)/(k-2))^k - e^4 < 1/n.

Original entry on oeis.org

18, 25, 30, 35, 39, 42, 46, 49, 52, 55, 57, 60, 62, 64, 67, 69, 71, 73, 75, 77, 79, 81, 82, 84, 86, 88, 89, 91, 92, 94, 96, 97, 99, 100, 101, 103, 104, 106, 107, 108, 110, 111, 112, 114, 115, 116, 118, 119, 120, 121, 122, 124, 125, 126, 127, 128, 129, 130
Offset: 1

Views

Author

Clark Kimberling, Oct 02 2014

Keywords

Comments

In general, for fixed positive m, the limit of ((m*x+1)/(m*x-1))^x is e^(2/m), as illustrated by A248103, A248106, A248111.

Examples

			Approximations are shown here:
n ... ((n+2)/(n-2))^n - e^4 ... 1/n
6 .... 9.40185 ................ 0.16666
12 ... 2.09576 ................ 0.8333333
18 ... 0.913001 ............... 0.0555555
24 ... 0.510023 ............... 0.0416667
30 ... 0.325376 ............... 0.0333333
36 ... 0.225565 ............... 0.0277778
a(2) = 25 because p(25) - e^4 < 1/2 < p(24) - e^4.
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 14.

Crossrefs

Programs

  • Mathematica
    z = 1200; p[k_] := p[k] = ((k + 2)/(k - 2))^k
    N[Table[p[n] - E^4, {n, 1, z/12}]]
    f[n_] := f[n] = Select[Range[z], # > 2 && p[#] - E^4 < 1/n &, 1]
    u = Flatten[Table[f[n], {n, 1, z/10}]]  (* A248111 *)