cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248121 a(n) = floor(1 / (1/n - Pi^2/6 + Sum_{h=1..n} 1/h^2)).

Original entry on oeis.org

2, 9, 20, 34, 53, 76, 102, 133, 168, 206, 249, 296, 346, 401, 460, 522, 589, 660, 734, 813, 896, 982, 1073, 1168, 1266, 1369, 1476, 1586, 1701, 1820, 1942, 2069, 2200, 2334, 2473, 2616, 2762, 2913, 3068, 3226, 3389, 3556, 3726, 3901, 4080, 4262, 4449, 4640
Offset: 1

Views

Author

Clark Kimberling, Oct 02 2014

Keywords

Comments

It is well known that Sum_{h>=1} 1/h^2 = Pi^2/6; this sequence provides insight into the manner of convergence.

Examples

			Let d(n) = Pi^2/6 - Sum_{h=1..n} 1/h^2. Approximations are shown here:
n ... 1/n .... d(n) ....... 1/n - d(n) ... a(n)
1 ... 1 ...... 0.644934 ... 0.355066 ..... 2
2 ... 0.5 .... 0.394934 ... 0.105066 ..... 9
3 ... 0.33 ... 0.283823 ... 0.04951 ...... 20
4 ... 0.25 ... 0.221323 ... 0.028677 ..... 34
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 20.

Crossrefs

Cf. A000027, A264938 (second conjecture).

Programs

  • Mathematica
    z = 200; p[k_] := p[k] = Sum[1/h^2, {h, 1, k}];
    N[Table[Pi^2/6 - p[n], {n, 1, z/4}]]
    f[n_] := f[n] = Select[Range[z], Pi^2/6 - p[#] < 1/n &, 1]
    u = Flatten[Table[f[n], {n, 1, z}]]  (* A000027 *)
    v = Floor[Table[1/(1/n - (Pi^2/6 - p[n])), {n, 1, z}]]  (* A248121 *)

Formula

a(n) ~ 2*n^2. - Vaclav Kotesovec, Oct 09 2014
Conjectures from Chai Wah Wu, Aug 03 2022: (Start)
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n > 5.
G.f.: -x*(x + 1)^2*(x + 2)/((x - 1)^3*(x^2 + x + 1)). (End)

Extensions

Typo in name corrected by Vaclav Kotesovec, Oct 09 2014