A248121 a(n) = floor(1 / (1/n - Pi^2/6 + Sum_{h=1..n} 1/h^2)).
2, 9, 20, 34, 53, 76, 102, 133, 168, 206, 249, 296, 346, 401, 460, 522, 589, 660, 734, 813, 896, 982, 1073, 1168, 1266, 1369, 1476, 1586, 1701, 1820, 1942, 2069, 2200, 2334, 2473, 2616, 2762, 2913, 3068, 3226, 3389, 3556, 3726, 3901, 4080, 4262, 4449, 4640
Offset: 1
Examples
Let d(n) = Pi^2/6 - Sum_{h=1..n} 1/h^2. Approximations are shown here: n ... 1/n .... d(n) ....... 1/n - d(n) ... a(n) 1 ... 1 ...... 0.644934 ... 0.355066 ..... 2 2 ... 0.5 .... 0.394934 ... 0.105066 ..... 9 3 ... 0.33 ... 0.283823 ... 0.04951 ...... 20 4 ... 0.25 ... 0.221323 ... 0.028677 ..... 34
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 20.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
Formula
a(n) ~ 2*n^2. - Vaclav Kotesovec, Oct 09 2014
Conjectures from Chai Wah Wu, Aug 03 2022: (Start)
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n > 5.
G.f.: -x*(x + 1)^2*(x + 2)/((x - 1)^3*(x^2 + x + 1)). (End)
Extensions
Typo in name corrected by Vaclav Kotesovec, Oct 09 2014
Comments