This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248122 #72 Aug 24 2015 14:05:37 %S A248122 0,0,3,15,51,165,507,1551,4683,14127,42459,127599,383019,1149693, %T A248122 3449715,10351023,31054947,93170397,279516747,838566831,2515717083, %U A248122 7547200797,22641651939,67925104239,203775461139,611326828047,1833980928771 %N A248122 Number of strings of length n over a three-letter alphabet that begin with a nontrivial palindrome. %C A248122 A nontrivial palindrome is a palindrome of length two or greater. (I.e., "1" is a trivial palindrome, but "11" and "121" are nontrivial palindromes.) %C A248122 For example, 0012 is a string of length four over a three-letter alphabet that begins with a nontrivial palindrome (00). %C A248122 3 divides a(n) for all n: 0, 0, 1, 5, 17, 55, 169, 517, 1561, 4709, 14153, ... %C A248122 Number of walks of n steps that begin with a palindromic sequence on the complete graph K_3 with loops. (E.g., 0, 1, 1, 0, 2, 1, 2 is a valid walk with 7 steps and begins with the palindromic sequence '0110'.) %C A248122 lim n -> infinity a(n)/3^n ~ 0.721510080117 is the probability that a random, infinite base-3 string begins with a nontrivial palindrome. %H A248122 Peter Kagey, <a href="/A248122/b248122.txt">Table of n, a(n) for n = 0..1000</a> %F A248122 a(0) = 0; a(1) = 0; a(n) = 3*a(n-1) + 3^ceiling(n/2) - a(ceiling(n/2)), for n >= 2. %e A248122 For n = 3, the a(3) = 15 solutions are 000, 001, 002, 010, 020, 101, 110, 111, 112, 121, 202, 212, 220, 221, 222. %t A248122 a248122[n_] := Block[{f}, %t A248122 f[0] = f[1] = 0; %t A248122 f[x_] := 3*f[x - 1] + 3^Ceiling[x/2] - f[Ceiling[x/2]]; %t A248122 Table[f[i], {i, 0, n}]]; a248122[26] (* _Michael De Vlieger_, Dec 27 2014 *) %o A248122 (Ruby) seq = [0, 0]; (2..N).each{ |i| seq << 3 * seq[i-1] + 3**((i+1)/2) - seq[(i+1)/2] } %o A248122 (Haskell) %o A248122 import Data.Ratio %o A248122 a 0 = 0; a 1 = 0; %o A248122 a n = 3 * a(n - 1) + 3^ceiling(n % 2) - a(ceiling(n % 2)) -- _Peter Kagey_, Aug 13 2015 %Y A248122 Analogous sequences for k-letter alphabets: A249629 (k=4), A249638 (k=5), A249639 (k=6), A249640 (k=7), A249641 (k=8), A249642 (k=9), A249643 (k=10). %K A248122 easy,nonn,walk %O A248122 0,3 %A A248122 _Peter Kagey_, Oct 28 2014