cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248125 Least positive integer m such that m + n divides C(2m,m) + C(2n,n), where C(2k,k) = (2k)!/(k!)^2.

Original entry on oeis.org

1, 2, 5, 16, 3, 6, 2, 22, 101, 6, 21, 86, 43, 16, 15, 4, 3, 6, 21, 20, 11, 8, 49, 48, 7, 22, 29, 28, 27, 26, 25, 49, 11, 29, 133, 20, 19, 22, 71, 70, 7, 18, 13, 46, 11, 14, 25, 24, 23, 93, 45, 80, 43, 67, 29, 286, 171, 102, 97, 38
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 01 2014

Keywords

Comments

Conjecture: a(n) exists for all n > 0. Moreover, for n > 66 we have a(n) < n except for n = 364, 408.
a(n) = n for n = 1, 2, 6, 15, 20, 28, 66, ... The next term, if it exists, is greater than 10^4. - Derek Orr, Oct 01 2014

Examples

			a(3) = 5 since 3 + 5 = 8 divides C(6,3) + C(10,5) = 20 + 252 = 272.
		

Crossrefs

Programs

  • Mathematica
    Do[m=1;Label[aa];If[Mod[Binomial[2m,m]+Binomial[2n,n],m+n]==0,Print[n," ",m];Goto[bb]];m=m+1;Goto[aa];Label[bb];Continue,{n,1,60}]
  • PARI
    a(n)=m=1;while((binomial(2*m,m)+binomial(2*n,n))%(m+n),m++);m
    vector(100,n,a(n)) \\ Derek Orr, Oct 01 2014