A248133 Least positive integer m such that m + n divides T(m) + T(n), where T(.) is given by A002426.
1, 3, 1, 1, 7, 2, 2, 2, 1, 1, 7, 4, 37, 145, 35, 1, 25, 16, 5, 16, 1, 1, 18, 19, 3, 11, 41, 1, 7, 2, 48, 415, 1, 2, 15, 7, 13, 34, 97, 1, 27, 18, 56, 22, 1, 1, 5, 26, 22, 36, 18, 1, 117, 52, 376, 11, 1, 1, 23, 26
Offset: 1
Keywords
Examples
a(5) = 7 since 5 + 7 divides T(5) + T(7) = 51 + 393 = 444 = 12*37. a(2539) = 643425 since 2539 + 643425 = 645964 divides T(2539) + T(643425).
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
T[n_]:=Sum[Binomial[n,2k]Binomial[2k,k],{k,0,n/2}] Do[m=1;Label[aa];If[Mod[T[m]+T[n],m+n]==0,Print[n," ",m];Goto[bb]];m=m+1;Goto[aa];Label[bb];Continue,{n,1,60}]
Comments