A248142 Least positive integer m such that m + n divides A(m) + A(n), where A(.) is given by A005259.
1, 1, 7, 2238, 5, 9, 3, 3, 1, 2484, 2, 2, 26, 12, 24, 5, 41, 32, 14, 3, 29, 29, 6, 15, 30, 7, 8, 37, 21, 5, 44, 18, 5, 16, 39, 34, 8, 1, 6, 5, 17, 8, 26, 6, 865, 39, 8, 13, 16, 781, 356, 35, 184, 65, 30, 139, 18, 25, 16, 123
Offset: 1
Keywords
Examples
a(3) = 7 since 3 + 7 = 10 divides A(3) + A(7) = 1445 + 584307365 = 584308810.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..2853
Crossrefs
Programs
-
Mathematica
A[0]=1;A[1]=5 A[n_]:=((2n-1)(17*n(n-1)+5)*A[n-1]-(n-1)^3*A[n-2])/n^3 Do[m=1; Label[aa]; If[Mod[A[m]+A[n], m+n]==0, Print[n, " ", m]; Goto[bb]]; m=m+1; Goto[aa]; Label[bb]; Continue, {n, 1, 60}]
Comments