A248143 Least integer m > 0 such that m + n divides p(m) + p(n), where p(.) is the partition function given by A000041.
1, 1, 1, 61, 13, 7, 1, 25, 109, 41, 60, 1, 5, 24, 18, 6, 3, 7, 38, 12, 86, 31, 18, 14, 8, 96, 470, 2, 37, 245, 8, 6, 37, 2, 20, 137, 3, 19, 24, 63, 10, 99, 52, 32, 16, 638, 15, 20, 61, 45, 288, 43, 52, 12, 371, 123, 94, 8, 483, 11
Offset: 1
Keywords
Examples
a(5) = 13 since 5 + 13 = 18 divides p(5) + p(13) = 7 + 101 = 108.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..765
Crossrefs
Programs
-
Mathematica
Do[m=1;Label[aa];If[Mod[PartitionsP[m]+PartitionsP[n],m+n]==0,Print[n," ",m];Goto[bb]];m=m+1;Goto[aa];Label[bb];Continue,{n,1,60}]
Comments