A248177 Decimal expansion of the real part of psi(i), i being the imaginary unit.
0, 9, 4, 6, 5, 0, 3, 2, 0, 6, 2, 2, 4, 7, 6, 9, 7, 7, 2, 7, 1, 8, 7, 8, 4, 8, 2, 7, 2, 1, 9, 1, 0, 7, 2, 2, 4, 7, 6, 2, 6, 2, 9, 7, 1, 7, 6, 3, 5, 4, 1, 6, 2, 3, 2, 3, 2, 9, 8, 9, 7, 2, 4, 1, 1, 8, 9, 0, 5, 1, 1, 4, 7, 5, 9, 2, 8, 0, 6, 5, 3, 3, 8, 3, 4, 7, 0, 7, 0, 9, 4, 9, 5, 4, 5, 3, 6, 7, 1, 8, 1, 3, 7, 6, 4
Offset: 0
Examples
0.09465032062247697727187848272191072247626297176354162323298972411890...
Links
- Stanislav Sykora, Table of n, a(n) for n = -1..2000
- Wikipedia, Digamma function.
Programs
-
Maple
Re(Psi(I)) ; evalf(%) ; # R. J. Mathar, Oct 18 2019
-
Mathematica
RealDigits[N[Re[PolyGamma[0, I]], 105]][[1]] (* Vaclav Kotesovec, Oct 04 2014 *)
-
PARI
real(psi(I))
Formula
psi(i) = -EulerGamma - Sum_{k>=0} ((k-1)/(k+1)/(k^2+1)) + A113319*i, where EulerGamma is the Euler-Mascheroni constant (A001620).
Equals 3/4 - EulerGamma - 2*Sum_{k>=2} 1/(k*(k^4 - 1)). - Vaclav Kotesovec, Dec 24 2020
From Amiram Eldar, May 20 2022: (Start)
Equals Sum_{n>=1} 1/(n^3+n) - EulerGamma.
Equals 1/2 - EulerGamma + Sum_{n>=1} (-1)^(n+1) * (zeta(2*n+1) - 1). (End)
Comments