cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248177 Decimal expansion of the real part of psi(i), i being the imaginary unit.

Original entry on oeis.org

0, 9, 4, 6, 5, 0, 3, 2, 0, 6, 2, 2, 4, 7, 6, 9, 7, 7, 2, 7, 1, 8, 7, 8, 4, 8, 2, 7, 2, 1, 9, 1, 0, 7, 2, 2, 4, 7, 6, 2, 6, 2, 9, 7, 1, 7, 6, 3, 5, 4, 1, 6, 2, 3, 2, 3, 2, 9, 8, 9, 7, 2, 4, 1, 1, 8, 9, 0, 5, 1, 1, 4, 7, 5, 9, 2, 8, 0, 6, 5, 3, 3, 8, 3, 4, 7, 0, 7, 0, 9, 4, 9, 5, 4, 5, 3, 6, 7, 1, 8, 1, 3, 7, 6, 4
Offset: 0

Views

Author

Stanislav Sykora, Oct 03 2014

Keywords

Comments

For real b, Im(psi(b*i)) = 1/(2*b) + Pi*coth(Pi*b)/2, but no such closed formula is known for the real part (see Wikipedia link). - Vaclav Kotesovec, Dec 24 2020

Examples

			0.09465032062247697727187848272191072247626297176354162323298972411890...
		

Crossrefs

Programs

  • Maple
    Re(Psi(I)) ; evalf(%) ; # R. J. Mathar, Oct 18 2019
  • Mathematica
    RealDigits[N[Re[PolyGamma[0, I]], 105]][[1]]  (* Vaclav Kotesovec, Oct 04 2014 *)
  • PARI
    real(psi(I))

Formula

psi(i) = -EulerGamma - Sum_{k>=0} ((k-1)/(k+1)/(k^2+1)) + A113319*i, where EulerGamma is the Euler-Mascheroni constant (A001620).
Equals 3/4 - EulerGamma - 2*Sum_{k>=2} 1/(k*(k^4 - 1)). - Vaclav Kotesovec, Dec 24 2020
From Amiram Eldar, May 20 2022: (Start)
Equals Sum_{n>=1} 1/(n^3+n) - EulerGamma.
Equals 1/2 - EulerGamma + Sum_{n>=1} (-1)^(n+1) * (zeta(2*n+1) - 1). (End)