This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248180 #4 Oct 06 2014 23:00:06 %S A248180 1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,10,10,11,11,12,12,13,13,14,14,15, %T A248180 15,16,16,17,17,18,18,19,19,20,20,21,21,22,22,23,23,24,24,25,25,26,26, %U A248180 27,27,28,28,29,29,30,30,31,31,32,32,33,33,34,34,35 %N A248180 Least k such that r - sum{1/C(2h+1,h), h = 0..k} < 1/2^n, where r = (2/27)*(9 + 2*sqrt(3)*Pi). %C A248180 This sequence gives a measure of the convergence rate of sum{1/C(2h+1,h), h = 0..k}. Since a(n+1) - a(n) is in {0,1} for n >= 0, the sequences A248195 and A248196 partition the positive integers. %H A248180 Clark Kimberling, <a href="/A248180/b248180.txt">Table of n, a(n) for n = 0..3000</a> %e A248180 Let s(n) = sum{1/C(2h+1,h), h = 0..n}. Approximations are shown here: %e A248180 n ... r - s(n) ..... 1/2^n %e A248180 0 ... 0.47289 ...... 1 %e A248180 1 ... 0.139466 ..... 0.5 %e A248180 2 ... 0.0394664 .... 0.25 %e A248180 3 ... 0.010895 ..... 0.125 %e A248180 4 ... 0.00295845 ... 0.0625 %e A248180 a(3) = 2 because r - s(2) < 1/8 < r - s(1). %t A248180 $MaxExtraPrecision = Infinity; %t A248180 z = 300; p[k_] := p[k] = Sum[1/Binomial[2 h + 1, h], {h, 0, k}] ; %t A248180 r = Sum[1/Binomial[2 h + 1, h], {h, 0, Infinity}] (* A248179 *) %t A248180 r = 2/27 (9 + 2 Sqrt[3] \[Pi]); N[r, 20] %t A248180 N[Table[r - p[n], {n, 0, z/10}]] %t A248180 f[n_] := f[n] = Select[Range[z], r - p[#] < 1/2^n &, 1] %t A248180 u = Flatten[Table[f[n], {n, 0, z}]] (* A248180 *) %t A248180 Flatten[Position[Differences[u], 0]] (* A248195 *) %t A248180 Flatten[Position[Differences[u], 1]] (* A248196 *) %Y A248180 Cf. A248179, A248195, A248196. %K A248180 nonn,easy %O A248180 0,4 %A A248180 _Clark Kimberling_, Oct 03 2014