A248182 Least k such that r - sum{1/C(h,[h/2]), h = 0..k} < 1/2^n, where r = sum{1/C(h,[h/2]), h = 0..infinity}.
2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69
Offset: 0
Examples
Let s(n) = sum{1/C(2h+1,h), h = 0..n}. Approximations are shown here: n ... r - s(n) ... 1/2^n 0 ... 2.2092 ..... 1 1 ... 1.2092 ..... 0.5 2 ... 0.7092 ..... 0.25 3 ... 0.375866 ... 0.125 4 ... 0.2092 ..... 0.0625 5 ... 0.1092 ..... 0.0635 6 ... 0.05919 .... 0.0156 7 ... 0.03063 .... 0.007812 8 ... 0.01634 .... 0.003906 9 ... 0.00840 .... 0.001953 a(6) = 9 because r - s(9) < 1/64 < r - s(8).
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
Comments