A248188 Numbers k such that A248186(k+1) = A248186(k) + 1.
4, 5, 7, 8, 10, 11, 12, 14, 15, 17, 18, 20, 21, 23, 24, 25, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 44, 46, 47, 49, 50, 51, 53, 54, 56, 57, 59, 60, 62, 63, 64, 66, 67, 69, 70, 72, 73, 74, 76, 77, 79, 80, 82, 83, 85, 86, 87, 89, 90, 92, 93, 95, 96, 98
Offset: 1
Examples
The difference sequence of A248186 is (0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, ...), so that A248187 = (1, 2, 3, 6, 9, 13, 16, 19, 22,...) and A248188 = (4, 5, 7, 8, 10, 11, 12, 14, 15, 17,...), the complement of A248186.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
$MaxExtraPrecision = Infinity; z = 800; p[k_] := p[k] = Sum[1/(h*(h + 1)*(h + 2)*(h + 3)), {h, 1, k}]; N[Table[1/18 - p[n], {n, 1, z/10}]] f[n_] := f[n] = Select[Range[z], 1/18 - p[#] < 1/n^3 &, 1] u = Flatten[Table[f[n], {n, 1, z}]] (* A248186 *) Flatten[Position[Differences[u], 0]] (* A248187 *) Flatten[Position[Differences[u], 1]] (* A248188 *)
Comments