A248189 Least positive integer m such that m*n divides sigma(m^2+n^2), where sigma(k) is the sum of all positive divisors of k.
1, 1, 1, 7, 2, 38, 4, 81, 1, 102, 868, 1, 9, 3, 702, 26505, 1554, 14, 3, 243, 1, 650, 108, 1833, 34542, 18, 68, 186, 7252, 39, 58, 736839, 1, 3108, 72, 778, 210, 6, 3, 4830, 267, 2, 567, 5859, 6640, 6363, 3178412, 155771, 4964, 9
Offset: 1
Keywords
Examples
a(6) = 38 since 6*38 = 228 divides sigma(6^2+38^2) = sigma(1480) = 3420 = 15*228.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..100
Programs
-
Mathematica
Do[m=1; Label[aa]; If[Mod[DivisorSigma[1,m^2+n^2], m*n]==0, Print[n, " ", m]; Goto[bb]]; m=m+1; Goto[aa]; Label[bb]; Continue, {n, 1, 50}]
-
PARI
a(n)=m=1;while(sigma(n^2+m^2)%(m*n),m++);m n=1;while(n<50,print1(a(n),", ");n++) \\ Derek Orr, Oct 03 2014
Comments