A248196 Numbers k such that A248180(k+1) = A248180(k) + 1.
3, 5, 7, 9, 11, 13, 15, 17, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123
Offset: 0
Examples
The difference sequence of A248180 is (0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1,...), so that A248195 = (1,2,4,6,8,10,12,14,16,19,...) and A248196 = (3,5,7,9,11,13,15,17,18,...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1500
Programs
-
Mathematica
$MaxExtraPrecision = Infinity; z = 300; p[k_] := p[k] = Sum[1/Binomial[2 h + 1, h], {h, 0, k}] ; r = Sum[1/Binomial[2 h + 1, h], {h, 0, Infinity}] (* A248179 *) r = 2/27 (9 + 2 Sqrt[3] \[Pi]); N[r, 20] N[Table[r - p[n], {n, 0, z/10}]] f[n_] := f[n] = Select[Range[z], r - p[#] < 1/2^n &, 1] u = Flatten[Table[f[n], {n, 0, z}]] (* A248180 *) Flatten[Position[Differences[u], 0]] (* A248195 *) Flatten[Position[Differences[u], 1]] (* A248196 *)
Comments