A248717 Zeroless numbers k such that k - (sum of digits of k) and k - (product of digits of k) contain the same distinct digits as k.
12331, 13231, 13651, 21331, 23131, 23552, 25545, 26553, 31231, 31651, 32131, 32552, 34355, 34531, 34554, 35354, 35453, 35631, 36156, 36231, 43531, 45353, 46431, 53631, 54353, 54885, 55245, 55296, 59652, 61599, 63231, 64431, 87973, 95274, 122553, 125918, 126531, 126535, 126553
Offset: 1
Programs
-
Mathematica
Select[Range@100000,(d=IntegerDigits@#;FreeQ[d,0]&&Union@IntegerDigits[#-Times@@d]==Union@d==Union@IntegerDigits[#-Total@d])&] (* Giorgos Kalogeropoulos, Jul 20 2021 *)
-
PARI
for(n=0, 10^6, d=digits(n); p=prod(i=1, #d, d[i]); vp=vecsort(digits(p-n), , 8); vs=vecsort(digits(sumdigits(n)-n), , 8); if(vs==vp&&vp==vecsort(d, , 8)&&vs==vecsort(d, , 8)&&p, print1(n, ", ")))
-
Python
from math import prod def ok(n): s = str(n); d = list(map(int, s)) if '0' in s: return False return set(s) == set(str(n-sum(d))) and set(s) == set(str(n-prod(d))) print(list(filter(ok, range(127000)))) # Michael S. Branicky, Jul 18 2021
Comments