This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248223 #15 Oct 01 2022 14:17:35 %S A248223 2,7,5,6,1,1,3,4,8,2,6,9,3,3,1,7,3,4,8,9,3,1,2,2,8,0,0,5,9,6,4,5,6,8, %T A248223 4,6,2,4,2,0,0,2,5,6,5,0,3,0,0,8,9,8,4,6,1,7,0,1,7,3,6,7,2,0,3,3,8,3, %U A248223 4,6,2,1,4,8,8,5,8,4,0,5,3,6,6,7,2,5,9,5,6,4,7,3,4,2,4,7,8,7,7,2,7,1,3,7,8 %N A248223 Decimal expansion of (4/45)*Pi^3. %C A248223 The constant plays a role in the flatness problem. %H A248223 Alan H. Guth, <a href="http://journals.aps.org/prd/pdf/10.1103/PhysRevD.23.347">Inflationary universe: A possible solution to the horizon and flatness problems</a>, Physical Review D 23 (2), pp. 347-356. %H A248223 Wikipedia, <a href="http://en.wikipedia.org/wiki/Flatness_problem">Flatness problem</a> %H A248223 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a> %e A248223 2.756113482693317348931228005964568462420025650300898461701736720338346... %t A248223 RealDigits[N[4/45*Pi^3, 105]][[1]] %o A248223 (Magma) n:=4/45*Pi(RealField(105))^3; Reverse(Intseq(Floor(10^104*n))); %o A248223 (PARI) default(realprecision, 105); x=4/45*Pi^3; for(n=1, 105, d=floor(x); x=(x-d)*10; print1(d, ", ")); %Y A248223 Cf. A236258, A248224. %K A248223 nonn,cons,easy %O A248223 1,1 %A A248223 _Arkadiusz Wesolowski_, Oct 04 2014