This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248224 #30 Nov 07 2023 03:16:10 %S A248224 1,7,8,8,6,3,3,7,1,9,5,7,3,5,6,8,6,7,3,9,5,0,2,3,6,1,2,3,2,2,9,6,0,6, %T A248224 9,6,0,9,5,6,8,9,0,3,5,1,8,2,4,0,3,7,2,4,5,5,4,4,0,3,2,8,1,2,5,9,1,0, %U A248224 0,1,5,8,3,4,0,9,6,8,8,9,1,2,9,7,1,5,0,5,9,0,8,6,3,3,3,5,3,9,3,6,6,5,8,3,6 %N A248224 Decimal expansion of (43/11)*(4*Pi^3/45)^(3/2). %C A248224 The constant plays a role in the horizon problem. %C A248224 The early universe could contain at least (this constant)/M(p)^3*10^139 ~ 10^83 "separate regions that are causally disconnected", M(p) is the Planck mass energy ~ 1.22*10^19 GeV (see Alan H. Guth paper). %D A248224 A. J. Kox and Jean Eisenstaedt, The Universe of General Relativity (Einstein Studies), Birkhäuser, 2005, pp. 241-244. %H A248224 Alan H. Guth, <a href="https://doi.org/10.1103/PhysRevD.23.347">Inflationary universe: A possible solution to the horizon and flatness problems</a>, Physical Review D 23 (2), pp. 347-356. %H A248224 Wikipedia, <a href="http://en.wikipedia.org/wiki/Horizon_problem">Horizon problem</a> %H A248224 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a> %F A248224 g(*)(T(gamma)) * A248223^(3/2), where g(*)(T(gamma)) = 2 + 7/8*6*4/11 = 43/11. %e A248224 17.88633719573568673950236123229606960956890351824037245544032812591001... %t A248224 RealDigits[N[43/11*(4/45*Pi^3)^(3/2), 105]][[1]] %o A248224 (Magma) n:=43/11*(4/45*Pi(RealField(104))^3)^(3/2); Reverse(Intseq(Floor(10^103*n))); %o A248224 (PARI) default(realprecision, 105); x=43/110*(4/45*Pi^3)^(3/2); for(n=1, 105, d=floor(x); x=(x-d)*10; print1(d, ", ")); %Y A248224 Cf. A236258, A248223. %K A248224 nonn,cons,easy %O A248224 2,2 %A A248224 _Arkadiusz Wesolowski_, Oct 04 2014