This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248227 #9 Oct 09 2014 07:13:15 %S A248227 1,1,2,3,3,4,5,6,6,7,8,8,9,10,10,11,12,12,13,14,15,15,16,17,17,18,19, %T A248227 19,20,21,21,22,23,24,24,25,26,26,27,28,28,29,30,31,31,32,33,33,34,35, %U A248227 35,36,37,37,38,39,40,40,41,42,42,43,44,44,45,46,46,47 %N A248227 Least k such that zeta(4) - sum{1/h^4, h = 1..k} < 1/n^3. %C A248227 This sequence and A248230 provide insight into the manner of convergence of sum{1/h^4, h = 0..k}. Since a(n+1) - a(n) is in {0,1} for n >= 1, A248228 and A248229 are complementary. %H A248227 Clark Kimberling, <a href="/A248227/b248227.txt">Table of n, a(n) for n = 1..1000</a> %F A248227 a(n) ~ 3^(-1/3) * n. - _Vaclav Kotesovec_, Oct 09 2014 %e A248227 Let s(n) = sum{1/h^4, h = 1..n}. Approximations are shown here: %e A248227 n ... zeta(4) - s(n) ... 1/n^3 %e A248227 1 ... 0.0823232 .... 1 %e A248227 2 ... 0.0198232 .... 0.125 %e A248227 3 ... 0.0074775 .... 0.037 %e A248227 4 ... 0.0035713 .... 0.015 %e A248227 5 ... 0.0019713 .... 0.008 %e A248227 6 ... 0.0011997 .... 0.005 %e A248227 a(6) = 4 because zeta(4) - s(4) < 1/216 < zeta(4) - s(3). %t A248227 $MaxExtraPrecision = Infinity; z = 400; p[k_] := p[k] = Sum[1/h^4, {h, 1, k}]; %t A248227 N[Table[Zeta[4] - p[n], {n, 1, z/10}]] %t A248227 f[n_] := f[n] = Select[Range[z], Zeta[4] - p[#] < 1/n^3 &, 1]; %t A248227 u = Flatten[Table[f[n], {n, 1, z}]] (* A248227 *) %t A248227 Flatten[Position[Differences[u], 0]] (* A248228 *) %t A248227 Flatten[Position[Differences[u], 1]] (* A248229 *) %t A248227 f = Table[Floor[1/(Zeta[4] - p[n])], {n, 1, z}] (* A248230 *) %Y A248227 Cf. A248228, A248229, A248230, A013662. %K A248227 nonn,easy %O A248227 1,3 %A A248227 _Clark Kimberling_, Oct 05 2014