A248228 Numbers k such that A248227(k+1) = A248227(k).
1, 4, 8, 11, 14, 17, 21, 24, 27, 30, 34, 37, 40, 44, 47, 50, 53, 57, 60, 63, 66, 70, 73, 76, 79, 83, 86, 89, 92, 96, 99, 102, 105, 109, 112, 115, 119, 122, 125, 128, 132, 135, 138, 141, 145, 148, 151, 154, 158, 161, 164, 167, 171, 174, 177, 180, 184, 187
Offset: 1
Examples
The difference sequence of A248227 is (0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, ...), so that A248228 = (1, 4, 8, 11, 14, 17, 2,...) and A248229 = (2, 3, 5, 6, 7, 9, 10, 12, 13, 15, 16, 18,...), the complement of A248228.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..300
Programs
-
Mathematica
$MaxExtraPrecision = Infinity; z = 400; p[k_] := p[k] = Sum[1/h^4, {h, 1, k}]; N[Table[Zeta[4] - p[n], {n, 1, z/10}]] f[n_] := f[n] = Select[Range[z], Zeta[4] - p[#] < 1/n^3 &, 1]; u = Flatten[Table[f[n], {n, 1, z}]] (* A248227 *) Flatten[Position[Differences[u], 0]] (* A248228 *) Flatten[Position[Differences[u], 1]] (* A248229 *) f = Table[Floor[1/(Zeta[4] - p[n])], {n, 1, z}] (* A248230 *)
Comments