This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248232 #4 Oct 08 2014 16:49:11 %S A248232 1,4,8,11,15,18,22,25,28,32,35,39,42,46,49,52,56,59,63,66,69,73,76,80, %T A248232 83,87,90,93,97,100,104,107,110,114,117,121,124,128,131,134,138,141, %U A248232 145,148,151,155,158,162,165,168,172,175,179,182,186,189,192,196 %N A248232 Numbers k such that A248231(k+1) = A248231(k). %C A248232 Since A248231(k+1) - A248232(k) is in {0,1} for k >= 1, A248232 and A248233 are complementary. %H A248232 Clark Kimberling, <a href="/A248232/b248232.txt">Table of n, a(n) for n = 1..500</a> %e A248232 The difference sequence of A248231 is (0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, ...), so that A248232 = (1, 4, 8, 11, 15, 18, 22, 25, 28,...) and A248233 = (2, 3, 5, 6, 7, 9, 10, 12, 13, 14, 16, 17,...), the complement of A248232. %t A248232 z = 400; p[k_] := p[k] = Sum[1/h^5, {h, 1, k}]; N[Table[Zeta[5] - p[n], {n, 1, z/10}]] %t A248232 f[n_] := f[n] = Select[Range[z], Zeta[5] - p[#] < 1/n^4 &, 1] %t A248232 u = Flatten[Table[f[n], {n, 1, z}]] (* A248231 *) %t A248232 Flatten[Position[Differences[u], 0]] (* A248232 *) %t A248232 Flatten[Position[Differences[u], 1]] (* A248233 *) %t A248232 Table[Floor[1/(Zeta[5] - p[n])], {n, 1, z}] (* A248234 *) %Y A248232 Cf. A248231, A248233, A248234, A248227. %K A248232 nonn,easy %O A248232 1,2 %A A248232 _Clark Kimberling_, Oct 05 2014