cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248233 Numbers k such that A248231(k+1) = A248231(k) + 1.

This page as a plain text file.
%I A248233 #7 Oct 11 2014 14:16:06
%S A248233 2,3,5,6,7,9,10,12,13,14,16,17,19,20,21,23,24,26,27,29,30,31,33,34,36,
%T A248233 37,38,40,41,43,44,45,47,48,50,51,53,54,55,57,58,60,61,62,64,65,67,68,
%U A248233 70,71,72,74,75,77,78,79,81,82,84,85,86,88,89,91,92,94
%N A248233 Numbers k such that A248231(k+1) = A248231(k) + 1.
%C A248233 Since A248231(k+1) - A248232(k) is in {0,1} for k >= 1, A248232 and A248233 are complementary.
%C A248233 This appears to be a duplicate of A097432. - _R. J. Mathar_, Oct 10 2014
%H A248233 Clark Kimberling, <a href="/A248233/b248233.txt">Table of n, a(n) for n = 1..1000</a>
%e A248233 The difference sequence of A248231 is (0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, ...), so that A248232 = (1, 4, 8, 11, 15, 18, 22, 25, 28,...) and A248233 = (2, 3, 5, 6, 7, 9, 10, 12, 13, 14, 16, 17,...), the complement of A248232.
%t A248233 z = 400; p[k_] := p[k] = Sum[1/h^5, {h, 1, k}]; N[Table[Zeta[5] - p[n], {n, 1, z/10}]]
%t A248233 f[n_] := f[n] = Select[Range[z], Zeta[5] - p[#] < 1/n^4 &, 1]
%t A248233 u = Flatten[Table[f[n], {n, 1, z}]]   (* A248231 *)
%t A248233 Flatten[Position[Differences[u], 0]]  (* A248232 *)
%t A248233 Flatten[Position[Differences[u], 1]]  (* A248233 *)
%t A248233 Table[Floor[1/(Zeta[5] - p[n])], {n, 1, z}]  (* A248234 *)
%Y A248233 Cf. A248231, A248232, A248234, A248227.
%K A248233 nonn,easy
%O A248233 1,1
%A A248233 _Clark Kimberling_, Oct 05 2014