cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248234 a(n) = floor(1/(zeta(5) - Sum_{h=1..n} 1/h^5)).

Original entry on oeis.org

27, 176, 639, 1706, 3759, 7279, 12842, 21119, 32879, 48986, 70399, 98175, 133466, 177519, 231679, 297386, 376175, 469679, 579626, 707839, 856239, 1026842, 1221759, 1443199, 1693466, 1974959, 2290175, 2641706, 3032239, 3464559, 3941546, 4466175, 5041519
Offset: 1

Views

Author

Clark Kimberling, Oct 05 2014

Keywords

Comments

This sequence provides insight into the manner of convergence of Sum_{h=1..n} 1/h^5.

Crossrefs

Programs

  • Mathematica
    z = 400; p[k_] := p[k] = Sum[1/h^5, {h, 1, k}]; N[Table[Zeta[5] - p[n], {n, 1, z/10}]]
    f[n_] := f[n] = Select[Range[z], Zeta[5] - p[#] < 1/n^4 &, 1]
    u = Flatten[Table[f[n], {n, 1, z}]]   (* A248231 *)
    Flatten[Position[Differences[u], 0]]  (* A248232 *)
    Flatten[Position[Differences[u], 1]]  (* A248233 *)
    Table[Floor[1/(Zeta[5] - p[n])], {n, 1, z}]  (* A248234 *)

Formula

Empirically, a(n) = 4*a(n-1) - 6*a(n-2) + 5*a(n-3) - 5*a(n-4) + 6*a(n-5) - 4*a(n-6) + a(n-7), for n >= 10.
Conjecture (for n >= 3): (12*n*(1+n)*(4+3*n+3*n^2) - 8 - cos(2*n*Pi/3) + sqrt(3)*sin(2*n*Pi/3))/9. - Vaclav Kotesovec, Oct 09 2014