cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248328 Square array read by antidiagonals downwards: super Patalan numbers of order 6.

This page as a plain text file.
%I A248328 #25 Nov 11 2024 03:56:52
%S A248328 1,6,30,126,90,990,3276,1260,1980,33660,93366,24570,20790,50490,
%T A248328 1161270,2800980,560196,324324,424116,1393524,40412196,86830380,
%U A248328 14004900,6162156,5513508,9754668,40412196,1414426860,2753763480,372130200,132046200,89791416,108694872,242473176,1212365880
%N A248328 Square array read by antidiagonals downwards: super Patalan numbers of order 6.
%C A248328 Generalization of super Catalan numbers, A068555, based on Patalan numbers of order 6, A025751.
%H A248328 Thomas M. Richardson, <a href="http://arxiv.org/abs/1410.5880">The Super Patalan Numbers</a>, arXiv:1410.5880 [math.CO], 2014.
%H A248328 Thomas M. Richardson, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Richardson/rich2.html">The Super Patalan Numbers</a>, Journal of Integer Sequences, Vol. 18 (2015), Article 15.3.3.
%F A248328 T(0,0)=1, T(n,k) = T(n-1,k)*(36*n-6)/(n+k), T(n,k) = T(n,k-1)*(36*k-30)/(n+k).
%F A248328 G.f.: (x/(1-36*x)^(5/6)+y/(1-36*y)^(1/6))/(x+y-36*x*y).
%F A248328 T(n,k) = (-1)^k*36^(n+k)*binomial(n-1/6,n+k).
%e A248328 T(0..4,0..4) is
%e A248328   1          6         126       3276      93366
%e A248328   30         90        1260      24570     560196
%e A248328   990        1980      20790     324324    6162156
%e A248328   33660      50490     424116    5513508   89791416
%e A248328   1161270    1393524   9754668   108694872 1548901926
%o A248328 (PARI) matrix(5, 5, nn, kk, n=nn-1;k=kk-1;(-1)^k*36^(n+k)*binomial(n-1/6,n+k)) \\ _Michel Marcus_, Oct 09 2014
%Y A248328 Cf. A068555, A025751, A004993 (first row), A004994 (first column), A004995 (second row), A004996 (second column), A248324, A248325, A248326, A248329, A248332.
%K A248328 nonn,tabl,easy
%O A248328 0,2
%A A248328 _Tom Richardson_, Oct 04 2014