cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248329 Square array read by antidiagonals downwards: super Patalan numbers of order 7.

This page as a plain text file.
%I A248329 #24 Nov 11 2024 03:56:48
%S A248329 1,7,42,196,147,1911,6860,2744,4459,89180,264110,72030,62426,156065,
%T A248329 4213755,10722866,2218524,1310946,1747928,5899257,200574738,450360372,
%U A248329 75060062,33647614,30588740,55059732,234003861,9594158301,19365495996,2702162232,975780806,672952280,825895980,1872030888
%N A248329 Square array read by antidiagonals downwards: super Patalan numbers of order 7.
%C A248329 Generalization of super Catalan numbers, A068555, based on Patalan numbers of order 7, A025752.
%H A248329 Thomas M. Richardson, <a href="http://arxiv.org/abs/1410.5880">The Super Patalan Numbers</a>, arXiv:1410.5880 [math.CO], 2014.
%H A248329 Thomas M. Richardson, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Richardson/rich2.html">The Super Patalan Numbers</a>, Journal of Integer Sequences, Vol. 18 (2015), Article 15.3.3.
%F A248329 T(0,0)=1, T(n,k) = T(n-1,k)*(49*n-7)/(n+k), T(n,k) = T(n,k-1)*(49*k-42)/(n+k).
%F A248329 G.f.: (x/(1-49*x)^(6/7)+y/(1-49*y)^(1/7))/(x+y-49*x*y).
%F A248329 T(n,k) = (-1)^k*49^(n+k)*binomial(n-1/7,n+k).
%e A248329 T(0..4,0..4) is
%e A248329   1           7          196        6860       264110
%e A248329   42          147        2744       72030      2218524
%e A248329   1911        4459       62426      1310946    33647614
%e A248329   89180       156065     1747928    30588740   672952280
%e A248329   4213755     5899257    55059732   825895980  15898497615
%o A248329 (PARI) matrix(5, 5, nn, kk, n=nn-1;k=kk-1;(-1)^k*49^(n+k)*binomial(n-1/7,n+k)) \\ _Michel Marcus_, Oct 09 2014
%Y A248329 Cf. A068555, A025752, A034835 (first row), A216703 (first column), A248324, A248325, A248326, A248328, A248332.
%K A248329 nonn,tabl,easy
%O A248329 0,2
%A A248329 _Tom Richardson_, Oct 04 2014