cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248345 Signed version of A094953.

Original entry on oeis.org

1, -1, 2, 2, -4, 3, -2, 8, -9, 4, 3, -12, 21, -16, 5, -3, 18, -39, 44, -25, 6, 4, -24, 66, -96, 80, -36, 7, -4, 32, -102, 184, -200, 132, -49, 8, 5, -40, 150, -320, 430, -372, 203, -64, 9, -5, 50, -210, 520, -830, 888, -637, 296, -81, 10, 6, -60, 285, -800, 1480, -1884, 1673, -1024, 414, -100, 11
Offset: 0

Views

Author

Derek Orr, Oct 30 2014

Keywords

Comments

This is the transformation of the polynomial 1 + 2x + 3x^2 + 4x^3 + ... + n*x^(n-1)+(n+1)*x^n to the polynomial A_0*(x+1)^0 + A_1*(x+1)^1 + A_2*(x+1)^2 + ... + A_n*(x+1)^n. This sequence gives A_0, ... A_n as the entries in the n-th row of this triangle, starting at n = 0.

Examples

			1;
-1,  2;
2,  -4,    3;
-2,  8,   -9,    4;
3, -12,   21,  -16,    5;
-3, 18,  -39,   44,  -25,    6;
4, -24,   66,  -96,   80,  -36,    7;
-4, 32, -102,  184, -200,  132,  -49,   8;
5, -40,  150, -320,  430, -372,  203, -64,   9;
-5, 50, -210,  520, -830,  888, -637, 296, -81, 10
		

Crossrefs

Programs

  • PARI
    T(n,k)=(k+1)*sum(i=0,n-k,(-1)^i*binomial(i+k+1,k+1))
    for(n=0,15,for(k=0,n,print1(T(n,k),", ")))

Formula

Rows sum to 1.
T(n,n) = n for n >= 0.
T(n,n-1) = -n^2 for n >= 1.
T(n,2) = A007518(n)*(-1)^n for n >= 2.
T(n,1) = A007590(n+1)*(-1)^(n+1) for n >= 1.
T(n,0) = A001057(n+1) for n >= 0.