cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248348 a(n) = number of polynomials a_k*x^k + ... + a_1*x + a_0 with k > 0, integer coefficients, only distinct integer roots, and a_0 = p^n (p is a prime).

Original entry on oeis.org

3, 11, 23, 47, 83, 139, 227, 355, 539, 803, 1175, 1687, 2391, 3343, 4619, 6323, 8571, 11515, 15355, 20323, 26715, 34907, 45339, 58563, 75263, 96255, 122535, 155327, 196087, 246575, 308931, 385691, 479899, 595219, 735979, 907347, 1115483, 1367643, 1672435
Offset: 0

Views

Author

Reiner Moewald, Oct 05 2014

Keywords

Comments

If D_n = {-p^n, ..., -p^0, p^0, ..., p^n} is the set of all positive and negative divisors of p^n (p is a prime), then a(n) gives the number of all subsets of D_n for which the product of all their elements is a divisor of p^n.

Examples

			a(0)= 3: x+1; -x+1; -x^2+1.
		

Crossrefs

Extensions

a(15)-a(38) from Hiroaki Yamanouchi, Nov 21 2014