This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248355 #12 Oct 09 2014 06:55:22 %S A248355 4,5,6,7,8,8,9,10,10,11,11,12,12,13,13,13,14,14,14,15,15,16,16,16,17, %T A248355 17,17,17,18,18,18,19,19,19,20,20,20,20,21,21,21,21,22,22,22,22,23,23, %U A248355 23,23,23,24,24,24,24,25,25,25,25,25,26,26,26,26,26,27 %N A248355 Least k such that Pi - k*sin(Pi/k) < 1/(2n). %C A248355 For n > 1, let arch(n) = n*sin(Pi/n) be the Archimedean approximation to Pi (Finch, pp. 17 and 23) given by a regular polygon of n+1 sides. A248355 provides insight into the manner of convergence of arch(n) to Pi. (For the closely related function Arch, see A248347.) %H A248355 Clark Kimberling, <a href="/A248355/b248355.txt">Table of n, a(n) for n = 1..10000</a> %F A248355 a(n) ~ Pi*sqrt(Pi*n/3). - _Vaclav Kotesovec_, Oct 09 2014 %e A248355 Approximations are shown here: %e A248355 n Pi - arch(n) 1/(2n) %e A248355 1 3.14159... 0.5 %e A248355 2 1.14159... 0.25 %e A248355 3 0.543516... 0.16667 %e A248355 4 0.313166... 0.125 %e A248355 5 0.202666... 0.1 %e A248355 6 0.141593... 0.08333 %e A248355 7 0.105506... 0.07143 %e A248355 8 0.0801252... 0.0625 %e A248355 a(5) = 8 because Pi - arch(8) < 1/10 < Pi - arch(7). %t A248355 z = 200; p[k_] := p[k] = k*Sin[Pi/k]; N[Table[Pi - p[n], {n, 1, z/10}]] %t A248355 f[n_] := f[n] = Select[Range[z], Pi - p[#] < 1/(2 n) &, 1] %t A248355 u = Flatten[Table[f[n], {n, 1, z}]] (* A248355 *) %t A248355 v = Flatten[Position[Differences[u], 0]] (* A248356 *) %t A248355 w = Flatten[Position[Differences[u], 1]] (* A248357 *) %t A248355 f = Table[Floor[1/(Pi - p[n])], {n, 1, z}] (* A248358 *) %Y A248355 Cf. A248356, A248357, A248358, A248347, A248578. %K A248355 nonn,easy %O A248355 1,1 %A A248355 _Clark Kimberling_, Oct 05 2014