This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248358 #13 Oct 09 2014 05:53:36 %S A248358 0,0,1,3,4,7,9,12,15,19,23,27,32,38,43,49,56,62,69,77,85,93,102,111, %T A248358 121,130,141,151,162,174,186,198,210,223,237,250,265,279,294,309,325, %U A248358 341,357,374,391,409,427,445,464,483,503,523,543,564,585,606,628 %N A248358 Floor(1/(Pi - n*sin(Pi/n))). %C A248358 For n > 1, let arch(n) = n*sin(Pi/n) be the Archimedean approximation to Pi (Finch, pp. 17 and 23) given by a regular polygon of n+1 sides. A248358 and A248355 provide insight into the manner of convergence of arch(n) to Pi. (For the closely related function Arch, see A248347.) %C A248358 See A248578 for the similar sequence round(1/(Pi-n*sin(Pi/n))). - _M. F. Hasler_, Oct 08 2014 %H A248358 Clark Kimberling, <a href="/A248358/b248358.txt">Table of n, a(n) for n = 1..10000</a> %F A248358 a(n) ~ 6*n^2/Pi^3. - _Vaclav Kotesovec_, Oct 09 2014 %e A248358 n Pi - arch(n) 1/(Pi - arch(n)) %e A248358 1 3.14159... 0.3183... %e A248358 2 1.14159... 0.8759... %e A248358 3 0.54351... 1.8398... %e A248358 4 0.31316... 3.1932... %e A248358 5 0.20266... 4.9342... %e A248358 6 0.14159... 7.0625... %t A248358 z = 200; p[k_] := p[k] = k*Sin[Pi/k]; N[Table[Pi - p[n], {n, 1, z/10}]] %t A248358 f[n_] := f[n] = Select[Range[z], Pi - p[#] < 1/(2 n) &, 1] %t A248358 u = Flatten[Table[f[n], {n, 1, z}]] (* A248355 *) %t A248358 v = Flatten[Position[Differences[u], 0]] (* A248356 *) %t A248358 w = Flatten[Position[Differences[u], 1]] (* A248357 *) %t A248358 f = Table[Floor[1/(Pi - p[n])], {n, 1, z}] (* A248358 *) %o A248358 (PARI) a(n)=1\(Pi-n*sin(Pi/n)) \\ _M. F. Hasler_, Oct 08 2014 %Y A248358 Cf. A248355, A248356, A248357, A248347, A248578. %K A248358 nonn,easy %O A248358 1,4 %A A248358 _Clark Kimberling_, Oct 05 2014