This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248367 #31 May 22 2025 10:21:40 %S A248367 5,71,101,191,311,821,1451,4091,4481,4931,5441,6791,12071,13721,14591, %T A248367 17921,18251,20441,20771,20981,21521,21611,35801,38711,41141,41981, %U A248367 43541,46271,47351,47741,48821,49331,53231,64151,70841 %N A248367 Initial members of prime quadruples (n, n+2, n+36, n+38). %C A248367 This sequence is prime n, where there exist two twin prime pairs of (n,n+2), (n+36,n+38). %C A248367 This sequence is a subsequence of A001359 (lesser of twin primes). %C A248367 Excluding 5, this sequence is a subsequence of A132232 (primes, 11 mod 30). %H A248367 Karl V. Keller, Jr., <a href="/A248367/b248367.txt">Table of n, a(n) for n = 1..100000</a> %H A248367 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeQuadruplet.html">Prime Quadruplet.</a> %H A248367 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TwinPrimes.html">Twin Primes</a> %H A248367 Wikipedia, <a href="http://www.wikipedia.org/wiki/Twin_prime">Twin prime</a> %e A248367 For n=71, the numbers 71, 73, 107, 109, are primes. %t A248367 a248367[n_] := Select[Prime@Range@n, And[PrimeQ[# + 2], PrimeQ[# + 36], PrimeQ[# + 38]] &]; a248367[8000] (* _Michael De Vlieger_, Jan 11 2015 *) %t A248367 Select[Prime[Range[8000]],AllTrue[#+{2,36,38},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Dec 17 2019 *) %o A248367 (Python) %o A248367 from sympy import isprime %o A248367 for n in range(1,10000001,2): %o A248367 if isprime(n) and isprime(n+2) and isprime(n+36) and isprime(n+38): print(n,end=', ') %Y A248367 Cf. A077800 (twin primes), A001359, A132232, A181603 (twin primes, end 1). %K A248367 nonn %O A248367 1,1 %A A248367 _Karl V. Keller, Jr._, Jan 11 2015