This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248410 #27 May 22 2025 10:21:40 %S A248410 3,11,11,23,11,43,11,47,23,43,11,103,11,43,43,83,11,103,11,103,43,43, %T A248410 11,223,23,43,47,103,11,187,11,139,43,43,43,275,11,43,43,223,11,187, %U A248410 11,103,103,43,11,427,23,103,43,103,11,223,43,223,43,43,11,503,11,43,103,227,43,187,11,103,43,187,11,635,11,43,103,103,43,187,11 %N A248410 a(n) = number of polynomials a_k*x^k + ... + a_1*x + n with k > 0, integer coefficients and only distinct integer roots. %C A248410 If D_n is the set of all positive and negative divisors of n, then a(n) is the number of all subsets of D_n for which the product of all their elements is a divisor of n. a(n) depends only on the prime signature of n. %H A248410 Reiner Moewald, <a href="/A248410/b248410.txt">Table of n, a(n) for n = 1..502</a> %e A248410 a(1)=3: x + 1; -x + 1; -x^2 + 1. %o A248410 (Python) %o A248410 from itertools import chain, combinations %o A248410 def powerset(iterable): %o A248410 s = list(iterable) %o A248410 return chain.from_iterable(combinations(s, r) for r in range(len(s)+1)) %o A248410 print("Start") %o A248410 a_n = 0 %o A248410 for num in range(1,1000): %o A248410 div_set = set((-1,1)) %o A248410 a_n = 0 %o A248410 for divisor in range(1, num + 1): %o A248410 if (num % divisor == 0): %o A248410 div_set.add(divisor) %o A248410 div_set.add(divisor*(-1)) %o A248410 pow_set = set(powerset(div_set)) %o A248410 num_set = len(pow_set) %o A248410 for count_set in range(0, num_set): %o A248410 subset = set(pow_set.pop()) %o A248410 num_subset = len(subset) %o A248410 prod = 1 %o A248410 if num_subset < 1: %o A248410 prod = 0 %o A248410 for count_subset in range (0, num_subset): %o A248410 prod = prod * subset.pop() %o A248410 if prod != 0: %o A248410 if (num % prod == 0): %o A248410 a_n = a_n +1 %o A248410 print(num, a_n) %o A248410 print("Ende") %Y A248410 Cf. A248348, A248955. %K A248410 nonn %O A248410 1,1 %A A248410 _Reiner Moewald_, Oct 06 2014