This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248416 #23 Jun 01 2022 18:08:48 %S A248416 1,4,1,6,4,1,7,7,7,1,10,11,13,13,1,11,13,21,25,25,1,13,16,25,41,49,49, %T A248416 1,16,19,31,49,81,97,97,1,18,21,37,61,97,161,193,193,1,19,25,41,73, %U A248416 121,193,321,385,385,1,21,28,49,81,145,241,385,641,769,769,1,24,31,55,97,161,289,481,769,1281,1537,1537,1 %N A248416 Rectangular array by antidiagonals: for n >= 0, row n gives the positions in the Thue-Morse sequence A010059 at which the first 2^n terms occur. %C A248416 Each row contains contains its successor as a proper subsequence. %C A248416 Note that this supposes that the Thue-Morse sequence A010059 has offset 1, whereas the true offset is 0. So really the entries should all be reduced by 1. - _N. J. A. Sloane_, Jul 01 2016 %C A248416 Apparently T(n,3) = A004119(n+1) for n>0. Apparently T(n,4) = A083575(n) for n>0. - _R. J. Mathar_, Nov 06 2018 %e A248416 Northwest corner, n>=0, k>=1: %e A248416 1 4 6 7 10 11 13 16 18 19 %e A248416 1 4 7 11 13 16 19 21 25 28 %e A248416 1 7 13 21 25 31 37 41 49 55 %e A248416 1 13 25 41 49 61 73 81 97 109 %e A248416 1 25 49 81 97 121 145 161 193 217 %e A248416 1 49 97 161 193 241 289 321 385 433 %e A248416 1 97 193 321 385 481 577 641 769 865 %e A248416 The Thue-Morse sequence A010059 begins with 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, from which we see that the first 4 terms (=1,0,0,1) occur at positions 1, 7, 13, ..., as indicated for row n=2. %p A248416 A010060 := proc(n) %p A248416 local i; %p A248416 add(i, i=convert(n, base, 2)) mod 2 ; %p A248416 end proc: %p A248416 A010059 := proc(n) %p A248416 1-A010060(n) ; %p A248416 end proc: %p A248416 A248416Off0 := proc(n,k) %p A248416 option remember ; %p A248416 local strtN,binpat,src,thue ; %p A248416 if k = 1 then %p A248416 strtN := 0 ; %p A248416 else %p A248416 strtN := 1+procname(n,k-1) ; %p A248416 end if; %p A248416 binpat := [seq(A010059(i),i=0..n-1)] ; %p A248416 for src from strtN do %p A248416 thue := [seq(A010059(i),i=src..src+nops(binpat)-1)] ; %p A248416 if binpat=thue then %p A248416 return src ; %p A248416 end if; %p A248416 end do: %p A248416 end proc: %p A248416 A248416 := proc(n,k) %p A248416 1+A248416Off0(2^n,k) ; %p A248416 end proc: %p A248416 for d from 1 to 11 do %p A248416 for k from d to 1 by -1 do %p A248416 printf("%d,",A248416(d-k,k)) ; %p A248416 end do: # _R. J. Mathar_, Nov 06 2018 %t A248416 z = 3000; u = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {1, 0}}] &, {0}, 20]; Length[u] %t A248416 t[p_, q_] := t[p, q] = Table[u[[k]], {k, p, q}]; %t A248416 r[n_] := Select[Range[z], t[#, # + 2^(n - 1)] == t[1, 1 + 2^(n - 1)] &] %t A248416 TableForm[Table[r[n], {n, 0, 10}]] %Y A248416 Cf. A010059 (Thue-Morse), A026147 (row 0), A091855 (row 1?), A157971 (row 2?), %Y A248416 Column 1 is essentially A004119 (or A181565). %K A248416 nonn,tabl %O A248416 1,2 %A A248416 _Clark Kimberling_, Oct 06 2014 %E A248416 Definitions and examples clarified. - _R. J. Mathar_, Nov 06 2018