cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248417 Sum of n-th powers of the roots of x^3 +25* x^2 + 31*x - 1.

This page as a plain text file.
%I A248417 #48 Jul 20 2016 23:51:51
%S A248417 3,-25,563,-13297,314947,-7460905,176745971,-4187046273,99189570819,
%T A248417 -2349764090041,55665038509363,-1318684086371985,31239136201419331,
%U A248417 -740043533319442377,17531356426655688179,-415311321997288071457,9838570957172556010499,-233072091590971314359129,5521391278779936334581299
%N A248417 Sum of n-th powers of the roots of x^3 +25* x^2 + 31*x - 1.
%C A248417 This is the other half of A274592.
%C A248417 a(n) is x1^n + x2^n + x3^n, where x1, x2, x3 are the roots of the polynomial
%C A248417 x^3 +25* x^2 + 31*x - 1.
%C A248417 x1 = (tan(2*Pi/7)*tan(4*Pi/7))/(tan(Pi/7))^2,
%C A248417 x2 = (tan(4*Pi/7)*tan(Pi/7))/(tan(2*Pi/7))^2,
%C A248417 x3 = (tan(Pi/7)*tan(2*Pi/7))(tan(4*Pi/7))^2.
%H A248417 Colin Barker, <a href="/A248417/b248417.txt">Table of n, a(n) for n = 0..700</a>
%H A248417 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (-25,-31,1).
%F A248417 a(n) = ((tan(Pi/7))^2/(tan(2*Pi/7)*tan(4*Pi/7)))^(-n)+((tan(2*Pi/7))^2/(tan(4*Pi/7)*tan(Pi/7)))^(-n)+((tan(4*Pi/7))^2/(tan(Pi/7)*tan(2*Pi/7)))^(-n).
%F A248417 a(n) = -25*a(n-1) - 31*a(n-2) + a(n-3).
%F A248417 G.f.: (3+50*x+31*x^2) / (1+25*x+31*x^2-x^3). - _Colin Barker_, Jul 01 2016
%t A248417 CoefficientList[Series[(3 + 50 x + 31 x^2)/(1 + 25 x + 31 x^2 - x^3), {x, 0, 18}], x] (* _Michael De Vlieger_, Jul 01 2016 *)
%o A248417 (PARI) Vec((3+50*x+31*x^2)/(1+25*x+31*x^2-x^3) + O(x^20)) \\ _Colin Barker_, Jul 01 2016
%o A248417 (PARI) polsym(x^3 +25* x^2 + 31*x - 1, 30) \\ _Charles R Greathouse IV_, Jul 20 2016
%Y A248417 Cf. A274592.
%K A248417 sign,easy
%O A248417 0,1
%A A248417 _Kai Wang_, Jul 01 2016