A248431 Number of length n+2 0..6 arrays with every three consecutive terms having the sum of some two elements equal to twice the third.
61, 105, 185, 327, 601, 1105, 2021, 3761, 6969, 12815, 23897, 44337, 81597, 152209, 282457, 519895, 969849, 1799825, 3312853, 6180081, 11468921, 21110367, 39381145, 73083121, 134521133, 250947665, 465706137, 857206439, 1599109049, 2967610449
Offset: 1
Keywords
Examples
Some solutions for n=6: ..3....4....5....2....5....2....4....2....4....4....4....3....5....3....5....6 ..2....6....3....6....4....4....2....4....2....3....3....4....3....4....4....4 ..4....2....1....4....6....6....0....3....6....5....5....2....4....2....6....5 ..3....4....5....2....5....5....1....2....4....1....1....3....2....3....5....3 ..5....3....3....3....4....4....2....4....2....3....3....4....6....1....4....1 ..1....2....4....4....3....3....3....6....0....2....2....2....4....2....3....2 ..3....4....2....5....5....2....4....2....4....1....4....3....5....3....2....3 ..5....0....6....3....4....4....5....4....2....0....0....1....3....4....4....4
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 6 of A248433
Formula
Empirical: a(n) = 8*a(n-3) - 11*a(n-6) + 4*a(n-9).
Empirical g.f.: x*(61 + 105*x + 185*x^2 - 161*x^3 - 239*x^4 - 375*x^5 + 76*x^6 + 108*x^7 + 164*x^8) / ((1 - x)*(1 + x + x^2)*(1 - 7*x^3 + 4*x^6)). - Colin Barker, Nov 08 2018