A248432 Number of length n+2 0..7 arrays with every three consecutive terms having the sum of some two elements equal to twice the third.
80, 140, 252, 462, 884, 1684, 3200, 6216, 11944, 22810, 44396, 85402, 163204, 317716, 611248, 1168198, 2274196, 4375320, 8362052, 16278784, 31318664, 59855842, 116523764, 224179214, 428448488, 834077068, 1604674164, 3066832822
Offset: 1
Keywords
Examples
Some solutions for n=6: ..6....6....0....4....2....3....4....6....4....3....2....4....5....2....3....4 ..4....2....3....2....3....1....6....4....2....5....3....2....3....4....5....5 ..5....4....6....0....4....2....5....5....3....4....1....6....7....3....7....3 ..3....0....0....4....5....0....4....3....1....6....5....4....5....5....6....7 ..7....2....3....2....3....1....3....1....2....2....3....5....3....4....5....5 ..5....4....6....3....7....2....2....2....0....4....7....3....4....3....7....6 ..3....6....0....1....5....0....4....0....1....3....5....1....5....5....3....4 ..1....5....3....5....6....1....3....1....2....2....3....5....6....4....5....2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 7 of A248433.
Formula
Empirical: a(n) = a(n-1) + 10*a(n-3) - 10*a(n-4) - 22*a(n-6) + 22*a(n-7) + 12*a(n-9) - 12*a(n-10) - a(n-12) + a(n-13).
Empirical g.f.: 2*x*(40 + 30*x + 56*x^2 - 295*x^3 - 89*x^4 - 160*x^5 + 588*x^6 + 58*x^7 + 96*x^8 - 317*x^9 - 5*x^10 - 9*x^11 + 27*x^12) / ((1 - x)*(1 - 10*x^3 + 22*x^6 - 12*x^9 + x^12)). - Colin Barker, Nov 08 2018