This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248434 #42 Aug 29 2020 02:14:54 %S A248434 2,9,16,29,42,61,80,105,130,161,192,229,266,309,352,401,450,505,560, %T A248434 621,682,749,816,889,962,1041,1120,1205,1290,1381,1472,1569,1666,1769, %U A248434 1872,1981,2090,2205,2320,2441,2562,2689,2816,2949,3082,3221,3360,3505,3650 %N A248434 Number of length three 0..n arrays with the sum of two elements equal to twice the third. %C A248434 Number of length three 0..n vectors that contain their arithmetic mean. - _Hywel Normington_, Aug 15 2020 %H A248434 David A. Corneth, <a href="/A248434/b248434.txt">Table of n, a(n) for n = 1..10000</a> (first 210 terms from R. H. Hardin) %H A248434 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-2,1). %F A248434 Empirical: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4). %F A248434 Empirical for n mod 2 = 0: a(n) = (3/2)*n^2 + n + 1. %F A248434 Empirical for n mod 2 = 1: a(n) = (3/2)*n^2 + n - (1/2). %F A248434 From _Hywel Normington_, Aug 21 2020: (Start) %F A248434 a(n) = a(n-1) + 1 + 6*floor(n/2) %F A248434 a(n) = A319127(n+1) + n + 1 = 6*floor((n+1)/2)*floor(n/2) + n + 1. %F A248434 (End) %F A248434 From _Colin Barker_, Aug 28 2020: (Start) %F A248434 G.f.: x*(2 + 5*x - 2*x^2 + x^3) / ((1 - x)^3*(1 + x)). %F A248434 a(n) = (1 + 3*(-1)^n + 4*n + 6*n^2) / 4 for n>0. %F A248434 (End) %e A248434 Some solutions for n=6: %e A248434 ..2....3....6....1....3....4....3....1....6....2....4....0....4....5....4....3 %e A248434 ..6....1....2....0....2....3....3....2....5....3....0....1....3....6....4....5 %e A248434 ..4....5....4....2....1....5....3....3....4....1....2....2....2....4....4....4 %o A248434 (PARI) a(n) = {my(res = 2); if(n % 2 == 0, res+=(1 + 6*floor(n/2))); n = (n-1)>>1; res+=6*n^2 + 8*n; res} \\ _David A. Corneth_, Aug 26 2020 %o A248434 (PARI) first(n) = {my(res = vector(n), inc = 7); res[1] = 2; for(i = 2, n, res[i] = res[i-1] + inc; inc += 6 * (i%2 == 1)); res} \\ _David A. Corneth_, Aug 26 2020 %Y A248434 Row 1 of A248433. %Y A248434 Cf. A168328, A319127, A319127. First differences A168301. %K A248434 nonn %O A248434 1,1 %A A248434 _R. H. Hardin_, Oct 06 2014 %E A248434 Name simplified by _Andrew Howroyd_, Aug 14 2020