cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248434 Number of length three 0..n arrays with the sum of two elements equal to twice the third.

This page as a plain text file.
%I A248434 #42 Aug 29 2020 02:14:54
%S A248434 2,9,16,29,42,61,80,105,130,161,192,229,266,309,352,401,450,505,560,
%T A248434 621,682,749,816,889,962,1041,1120,1205,1290,1381,1472,1569,1666,1769,
%U A248434 1872,1981,2090,2205,2320,2441,2562,2689,2816,2949,3082,3221,3360,3505,3650
%N A248434 Number of length three 0..n arrays with the sum of two elements equal to twice the third.
%C A248434 Number of length three 0..n vectors that contain their arithmetic mean. - _Hywel Normington_, Aug 15 2020
%H A248434 David A. Corneth, <a href="/A248434/b248434.txt">Table of n, a(n) for n = 1..10000</a> (first 210 terms from R. H. Hardin)
%H A248434 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-2,1).
%F A248434 Empirical: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4).
%F A248434 Empirical for n mod 2 = 0: a(n) = (3/2)*n^2 + n + 1.
%F A248434 Empirical for n mod 2 = 1: a(n) = (3/2)*n^2 + n - (1/2).
%F A248434 From _Hywel Normington_, Aug 21 2020: (Start)
%F A248434 a(n) = a(n-1) + 1 + 6*floor(n/2)
%F A248434 a(n) = A319127(n+1) + n + 1 = 6*floor((n+1)/2)*floor(n/2) + n + 1.
%F A248434 (End)
%F A248434 From _Colin Barker_, Aug 28 2020: (Start)
%F A248434 G.f.: x*(2 + 5*x - 2*x^2 + x^3) / ((1 - x)^3*(1 + x)).
%F A248434 a(n) = (1 + 3*(-1)^n + 4*n + 6*n^2) / 4 for n>0.
%F A248434 (End)
%e A248434 Some solutions for n=6:
%e A248434 ..2....3....6....1....3....4....3....1....6....2....4....0....4....5....4....3
%e A248434 ..6....1....2....0....2....3....3....2....5....3....0....1....3....6....4....5
%e A248434 ..4....5....4....2....1....5....3....3....4....1....2....2....2....4....4....4
%o A248434 (PARI) a(n) = {my(res = 2); if(n % 2 == 0, res+=(1 + 6*floor(n/2))); n = (n-1)>>1; res+=6*n^2 + 8*n; res} \\ _David A. Corneth_, Aug 26 2020
%o A248434 (PARI) first(n) = {my(res = vector(n), inc = 7); res[1] = 2; for(i = 2, n, res[i] = res[i-1] + inc; inc += 6 * (i%2 == 1)); res} \\ _David A. Corneth_, Aug 26 2020
%Y A248434 Row 1 of A248433.
%Y A248434 Cf. A168328, A319127, A319127. First differences A168301.
%K A248434 nonn
%O A248434 1,1
%A A248434 _R. H. Hardin_, Oct 06 2014
%E A248434 Name simplified by _Andrew Howroyd_, Aug 14 2020