A248435 Number of length 2+2 0..n arrays with every three consecutive terms having the sum of some two elements equal to twice the third.
2, 9, 20, 45, 70, 105, 140, 189, 242, 301, 360, 437, 514, 597, 684, 785, 886, 997, 1108, 1233, 1362, 1497, 1632, 1785, 1938, 2097, 2260, 2437, 2614, 2801, 2988, 3189, 3394, 3605, 3816, 4045, 4274, 4509, 4748, 5001, 5254, 5517, 5780, 6057, 6338, 6625, 6912
Offset: 1
Keywords
Examples
Some solutions for n=6: ..4....4....6....4....3....5....3....4....2....0....0....2....3....1....3....6 ..3....3....2....6....2....1....5....0....1....2....3....3....5....2....1....0 ..5....2....4....2....4....3....4....2....3....1....6....4....1....0....2....3 ..4....4....0....4....6....5....6....1....5....0....0....2....3....4....3....6
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 2 of A248433.
Formula
Empirical: a(n) = a(n-1) + a(n-3) - a(n-5) - a(n-7) + a(n-8).
Empirical for n mod 12 = 0: a(n) = (19/6)*n^2 - (5/3)*n + 1
Empirical for n mod 12 = 1: a(n) = (19/6)*n^2 - (5/3)*n + (1/2)
Empirical for n mod 12 = 2: a(n) = (19/6)*n^2 - (5/3)*n - (1/3)
Empirical for n mod 12 = 3: a(n) = (19/6)*n^2 - (5/3)*n - (7/2)
Empirical for n mod 12 = 4: a(n) = (19/6)*n^2 - (5/3)*n + 1
Empirical for n mod 12 = 5: a(n) = (19/6)*n^2 - (5/3)*n - (5/6)
Empirical for n mod 12 = 6: a(n) = (19/6)*n^2 - (5/3)*n + 1
Empirical for n mod 12 = 7: a(n) = (19/6)*n^2 - (5/3)*n - (7/2)
Empirical for n mod 12 = 8: a(n) = (19/6)*n^2 - (5/3)*n - (1/3)
Empirical for n mod 12 = 9: a(n) = (19/6)*n^2 - (5/3)*n + (1/2)
Empirical for n mod 12 = 10: a(n) = (19/6)*n^2 - (5/3)*n + 1
Empirical for n mod 12 = 11: a(n) = (19/6)*n^2 - (5/3)*n - (29/6).
Empirical g.f.: x*(2 + 7*x + 11*x^2 + 23*x^3 + 16*x^4 + 17*x^5 - x^6 + x^7) / ((1 - x)^3*(1 + x)*(1 + x^2)*(1 + x + x^2)). - Colin Barker, Nov 08 2018