A248436 Number of length 3+2 0..n arrays with every three consecutive terms having the sum of some two elements equal to twice the third.
2, 9, 24, 69, 118, 185, 252, 357, 470, 593, 716, 881, 1046, 1217, 1400, 1621, 1842, 2081, 2320, 2593, 2874, 3161, 3448, 3785, 4126, 4473, 4828, 5213, 5598, 6005, 6412, 6857, 7310, 7769, 8232, 8737, 9242, 9753, 10272, 10833, 11394, 11973, 12552, 13161, 13782
Offset: 1
Keywords
Examples
Some solutions for n=6: ..0....1....1....3....4....3....3....1....4....3....2....4....4....4....6....3 ..0....3....5....5....3....1....4....3....3....4....6....3....5....3....2....1 ..0....5....3....4....5....2....2....5....2....2....4....2....3....2....4....2 ..0....4....1....6....4....3....0....1....1....3....5....1....1....4....0....3 ..0....6....2....2....3....4....1....3....3....1....6....0....5....3....2....1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 3 of A248433.
Formula
Empirical: a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + 2*a(n-5) - a(n-6) + a(n-7) - a(n-11) + a(n-12) - 2*a(n-13) + a(n-14) - a(n-15) + a(n-16) - a(n-17) + a(n-18).
Also a quadratic polynomial plus a constant quasipolynomial with period 840, the first 12 being:
Empirical for n mod 840 = 0: a(n) = (106/15)*n^2 - (178/15)*n + 1
Empirical for n mod 840 = 1: a(n) = (106/15)*n^2 - (178/15)*n + (34/5)
Empirical for n mod 840 = 2: a(n) = (106/15)*n^2 - (178/15)*n + (67/15)
Empirical for n mod 840 = 3: a(n) = (106/15)*n^2 - (178/15)*n - 4
Empirical for n mod 840 = 4: a(n) = (106/15)*n^2 - (178/15)*n + (17/5)
Empirical for n mod 840 = 5: a(n) = (106/15)*n^2 - (178/15)*n + (2/3)
Empirical for n mod 840 = 6: a(n) = (106/15)*n^2 - (178/15)*n + (9/5)
Empirical for n mod 840 = 7: a(n) = (106/15)*n^2 - (178/15)*n - (56/5)
Empirical for n mod 840 = 8: a(n) = (106/15)*n^2 - (178/15)*n - (1/3)
Empirical for n mod 840 = 9: a(n) = (106/15)*n^2 - (178/15)*n + (22/5)
Empirical for n mod 840 = 10: a(n) = (106/15)*n^2 - (178/15)*n + 5
Empirical for n mod 840 = 11: a(n) = (106/15)*n^2 - (178/15)*n - (128/15).
Empirical g.f.: x*(2 + 7*x + 17*x^2 + 52*x^3 + 66*x^4 + 117*x^5 + 124*x^6 + 200*x^7 + 175*x^8 + 222*x^9 + 167*x^10 + 210*x^11 + 118*x^12 + 113*x^13 + 52*x^14 + 54*x^15 - x^16 + x^17) / ((1 - x)^3*(1 + x)*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)*(1 + x^4)*(1 + x + x^2 + x^3 + x^4)). - Colin Barker, Nov 08 2018