cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248461 T(n,k)=Number of length n+2 0..k arrays with no three consecutive terms having the sum of any two elements equal to twice the third.

Original entry on oeis.org

6, 18, 10, 48, 36, 16, 96, 148, 72, 26, 174, 380, 460, 144, 42, 282, 862, 1512, 1436, 288, 68, 432, 1652, 4272, 6040, 4488, 576, 110, 624, 2956, 9684, 21182, 24160, 14040, 1152, 178, 870, 4860, 20236, 56782, 105026, 96736, 43940, 2304, 288, 1170, 7642, 37868
Offset: 1

Views

Author

R. H. Hardin, Oct 06 2014

Keywords

Comments

Table starts
...6...18......48.......96.......174........282.........432.........624
..10...36.....148......380.......862.......1652........2956........4860
..16...72.....460.....1512......4272.......9684.......20236.......37868
..26..144....1436.....6040.....21182......56782......138534......295078
..42..288....4488....24160....105026.....332940......948412.....2299356
..68..576...14040....96736....520788....1952254.....6493036....17917712
.110.1152...43940...387488...2582406...11447368....44452660...139623544
.178.2304..137532..1552448..12805334...67123652...304332258..1088015294
.288.4608..430508..6220480..63497776..393591402..2083523194..8478351478
.466.9216.1347652.24926080.314866606.2307892826.14264241960.66067495706

Examples

			Some solutions for n=5 k=4
..3....4....4....0....1....4....3....1....0....0....1....1....1....1....3....4
..4....4....0....1....3....1....2....1....2....3....1....0....3....3....0....1
..4....1....4....1....0....2....3....4....3....1....0....1....4....4....3....1
..3....4....4....0....1....1....3....1....2....0....1....0....0....0....3....4
..0....0....1....4....1....2....2....4....3....1....4....3....0....0....4....1
..3....4....2....0....2....1....3....1....3....4....4....4....3....1....1....4
..3....3....4....0....2....1....2....2....4....2....0....4....1....3....1....4
		

Crossrefs

Column 1 is A006355(n+4)
Column 2 is A005010

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 2*a(n-1)
k=3: a(n) = 2*a(n-1) +3*a(n-2) +4*a(n-3) -3*a(n-4) -12*a(n-5) -4*a(n-6)
k=4: a(n) = 3*a(n-1) +5*a(n-2) +2*a(n-3) -16*a(n-4) -28*a(n-5) -8*a(n-6)
k=5: [order 12]
k=6: [order 16]
k=7: [order 22]
Empirical for row n:
n=1: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5); also a cubic polynomial plus a constant quasipolynomial with period 2
n=2: a(n) = 2*a(n-1) -a(n-3) -2*a(n-5) +2*a(n-6) +a(n-8) -2*a(n-10) +a(n-11); also a quartic polynomial plus a linear quasipolynomial with period 12
n=3: [order 27; also a degree 5 polynomial plus a quadratic quasipolynomial with period 840]
n=4: [order 61]