A248464 Number of length 3+2 0..n arrays with no three consecutive terms having the sum of any two elements equal to twice the third.
16, 72, 460, 1512, 4272, 9684, 20236, 37868, 67140, 111104, 177024, 269892, 400040, 574140, 806808, 1107132, 1493952, 1978984, 2586340, 3330852, 4242444, 5338788, 6656352, 8217136, 10064140, 12222784, 14744480, 17659176, 21025952, 24879392
Offset: 1
Keywords
Examples
Some solutions for n=6 ..2....2....3....1....4....2....2....1....2....4....0....1....3....3....6....5 ..3....5....2....3....1....6....6....4....0....4....2....6....6....0....0....4 ..5....6....0....1....4....1....2....4....0....1....5....5....6....5....2....4 ..2....0....5....6....4....6....5....0....3....5....3....0....2....5....2....0 ..4....5....3....2....1....4....2....6....5....5....6....5....2....6....3....5
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = a(n-1) +a(n-3) -2*a(n-7) +a(n-8) -2*a(n-9) +a(n-10) -a(n-11) +2*a(n-12) +2*a(n-15) -a(n-16) +a(n-17) -2*a(n-18) +a(n-19) -2*a(n-20) +a(n-24) +a(n-26) -a(n-27)
Also a polynomial of degree 5 plus a quadratic quasipolynomial with period 840, the first 12 being:
Empirical for n mod 840 = 0: a(n) = n^5 + (1/2)*n^4 + (20/3)*n^3 - (197/30)*n^2 + (51/5)*n
Empirical for n mod 840 = 1: a(n) = n^5 + (1/2)*n^4 + (20/3)*n^3 - (31/15)*n^2 + (66/5)*n - (33/10)
Empirical for n mod 840 = 2: a(n) = n^5 + (1/2)*n^4 + (20/3)*n^3 - (197/30)*n^2 + (113/15)*n - (152/15)
Empirical for n mod 840 = 3: a(n) = n^5 + (1/2)*n^4 + (20/3)*n^3 - (31/15)*n^2 + (26/5)*n - (1/2)
Empirical for n mod 840 = 4: a(n) = n^5 + (1/2)*n^4 + (20/3)*n^3 - (197/30)*n^2 + (51/5)*n - (12/5)
Empirical for n mod 840 = 5: a(n) = n^5 + (1/2)*n^4 + (20/3)*n^3 - (31/15)*n^2 + (158/15)*n + (1/6)
Empirical for n mod 840 = 6: a(n) = n^5 + (1/2)*n^4 + (20/3)*n^3 - (197/30)*n^2 + (51/5)*n - (24/5)
Empirical for n mod 840 = 7: a(n) = n^5 + (1/2)*n^4 + (20/3)*n^3 - (31/15)*n^2 + (26/5)*n + (67/10)
Empirical for n mod 840 = 8: a(n) = n^5 + (1/2)*n^4 + (20/3)*n^3 - (197/30)*n^2 + (113/15)*n - (4/3)
Empirical for n mod 840 = 9: a(n) = n^5 + (1/2)*n^4 + (20/3)*n^3 - (31/15)*n^2 + (66/5)*n - (9/10)
Empirical for n mod 840 = 10: a(n) = n^5 + (1/2)*n^4 + (20/3)*n^3 - (197/30)*n^2 + (51/5)*n - 8
Empirical for n mod 840 = 11: a(n) = n^5 + (1/2)*n^4 + (20/3)*n^3 - (31/15)*n^2 + (38/15)*n + (41/30)
Comments