This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248501 #33 Dec 01 2024 04:09:27 %S A248501 1,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,33,35,37,39,41,43, %T A248501 45,47,49,50,52,53,55,56,58,59,61,62,65,67,69,71,73,75,77,79,81,82,83, %U A248501 84,86,87,88,89,91,92,93,94,97,101,103,107,109,113,114,115 %N A248501 Numbers m that are coprime to floor(m/16). %C A248501 Definition of 'being coprime' and special-case conventions are as in Wikipedia. In particular, when m < 16 then floor(m/16) = 0, and zero is coprime only to 1. The complementary sequence is A248502. %C A248501 The asymptotic density of this sequence is A250031(16)/A250033(16) = 280817/480480 = 0.58445... . - _Amiram Eldar_, Nov 30 2024 %H A248501 Stanislav Sykora, <a href="/A248501/b248501.txt">Table of n, a(n) for n = 1..20000</a> %H A248501 Wikipedia, <a href="http://en.wikipedia.org/wiki/Coprime_integers">Coprime integers</a>. %F A248501 gcd(a(n),floor(a(n)/16)) = 1. %e A248501 1 is a term because gcd(1,0) = 1. %e A248501 2 is not a term because gcd(2,0) = 2. %e A248501 129 is a term because 129 is coprime to floor(129/16) = 8. %t A248501 Select[Range[120],CoprimeQ[#,Floor[#/16]]&] (* _Harvey P. Dale_, Mar 12 2023 *) %o A248501 (PARI) a=vector(20000); %o A248501 i=n=0; while(i++, if(gcd(i, i\16)==1, a[n++]=i; if(n==#a, break))); a %Y A248501 Cf. A248499, A248500, A248502, A250031, A250033. %K A248501 nonn,base,easy %O A248501 1,2 %A A248501 _Stanislav Sykora_, Oct 07 2014