A248513 Rectangular array by antidiagonals: the dispersion of A181155 ("odious numbers").
1, 2, 4, 3, 8, 6, 5, 15, 12, 7, 9, 29, 23, 14, 10, 17, 57, 45, 27, 20, 11, 33, 113, 89, 53, 39, 22, 13, 65, 225, 177, 105, 77, 43, 26, 16, 129, 449, 353, 209, 153, 85, 51, 32, 18, 257, 897, 705, 417, 305, 169, 101, 63, 36, 19, 513, 1793, 1409, 833, 609, 337
Offset: 1
Examples
Northwest corner: 1 ... 2 ... 3 ... 5 ... 9 .... 17 ... 33 4 ... 8 ... 15 .. 29 .. 57 ... 113 .. 225 6 ... 12 .. 23 .. 45 .. 89 ... 177 .. 353 7 ... 14 .. 27 .. 53 .. 105 .. 209 .. 417 10 .. 20 .. 39 .. 77 .. 153 .. 305 .. 609
References
- Clark Kimberling, Fractal sequences and interspersions, Ars Combinatoria 45 (1997) 157-168.
Links
- Clark Kimberling, Antidiagonals n = 1..60, flattened
- Clark Kimberling, Interspersions and dispersions, Proceedings of the American Mathematical Society, 117 (1993) 313-321.
Crossrefs
Cf. A248514.
Programs
-
Mathematica
r = 40; r1 = 10; (* r = # rows of T, r1 = # rows to show *); c = 40; c1 = 12; (* c = # cols of T, c1 = # cols to show *); x = GoldenRatio; s[n_] := s[n] = If[n < 1, 0, 2 n - Mod[Total[IntegerDigits[n - 1, 2]], 2]]; mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]; rows = {NestList[s, 1, c]}; Do[rows = Append[rows, NestList[s, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, r1}, {j, 1, c1}]] u = Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A248513 *) row[i_] := row[i] = Table[t[i, j], {j, 1, c}] f[n_] := Select[Range[r], MemberQ[row[#], n] &] v = Flatten[Table[f[n], {n, 1, 200}]] (* A248514 *)
Comments