A248514 Fractal sequence of the dispersion of the "odious numbers".
1, 1, 1, 2, 1, 3, 4, 2, 1, 5, 6, 3, 7, 4, 2, 8, 1, 9, 10, 5, 11, 6, 3, 12, 13, 7, 4, 14, 2, 15, 16, 8, 1, 17, 18, 9, 19, 10, 5, 20, 21, 11, 6, 22, 3, 23, 24, 12, 25, 13, 7, 26, 4, 27, 28, 14, 2, 29, 30, 15, 31, 16, 8, 32, 1, 33, 34, 17, 35, 18, 9, 36, 37, 19
Offset: 1
Examples
A northwest corner of the dispersion (A248513) of the "odious numbers" (A181155) follows: 1 ... 2 ... 3 ... 5 ... 9 ... 17 .... 33 4 ... 8 ... 15 .. 29 .. 57 .. 113 ... 225 6 ... 12 .. 23 .. 45 .. 89 .. 177 ... 353 7 ... 14 .. 27 .. 53 .. 105 .. 209 .. 417 10 .. 20 .. 39 .. 77 .. 153 .. 305 .. 609 The numbers 1, 2, 3, 4, 5 appear in rows 1, 1, 1, 2, 1, respectively, so that A248514 = (1, 1, 1, 2, 1, ...).
References
- Clark Kimberling, "Fractal sequences and interspersions," Ars Combinatoria 45 (1997) 157-168.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A248513.
Programs
-
Mathematica
r = 40; r1 = 10; (* r = # rows of T, r1 = # rows to show*); c = 40; c1 = 12; (* c = # cols of T, c1 = # cols to show*); x = GoldenRatio; s[n_] := s[n] = If[n < 1, 0, 2 n - Mod[Total[IntegerDigits[n - 1, 2]], 2]]; mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]; rows = {NestList[s, 1, c]}; Do[rows = Append[rows, NestList[s, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, r1}, {j, 1, c1}]] (* A248513 array*) u = Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A248013 sequence*) row[i_] := row[i] = Table[t[i, j], {j, 1, c}] f[n_] := Select[Range[r], MemberQ[row[#], n] &] v = Flatten[Table[f[n], {n, 1, 200}]] (* A248514 *)
Comments