This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248527 #17 Sep 08 2022 08:46:10 %S A248527 34,44,60,70,86,96,164,174,190,200,216,226,294,304,320,330,346,356, %T A248527 424,434,450,460,476,486,554,564,580,590,606,616,684,694,710,720,736, %U A248527 746,814,824,840,850,866,876,944,954,970,980,996,1006,1074,1084,1100,1110 %N A248527 Numbers n such that the smallest prime divisor of n^2+1 is 13. %C A248527 Or numbers n such that the smallest prime divisor of A002522(n) is A002313(3). %C A248527 a(n) == 8 (mod 26) if n is odd and a(n) == 18 (mod 26) if n is even. %C A248527 It is interesting to observe that a(n) is given by a linear formula (see the formula below). %H A248527 Amiram Eldar, <a href="/A248527/b248527.txt">Table of n, a(n) for n = 1..10000</a> %F A248527 {a(n)} = {8+(k + m)*26} union {18+(k + m)*26} for m = 0, 5, 10,...,5p,... and k = 1, 2, 3 (values in increasing order). %e A248527 34 is in the sequence because 34^2+1= 13*89. %p A248527 * first program * %p A248527 with(numtheory):p:=13: %p A248527 for n from 1 to 1000 do: %p A248527 if factorset(n^2+1)[1] = p then printf(`%d, `, n): %p A248527 else %p A248527 fi: %p A248527 od: %p A248527 * second program using the formula* %p A248527 for n from 0 to 100 by 5 do: %p A248527 for k from 1 to 3 do: %p A248527 x:=8+(k+n)*26:y:=18+(k+n)*26: %p A248527 printf(`%d, `,x):printf(`%d, `,y): %p A248527 od: %p A248527 od: %t A248527 lst={};Do[If[FactorInteger[n^2+1][[1,1]]==13,AppendTo[lst,n]],{n,2,2000}];lst %t A248527 p = 13; ps = Select[Range[p - 1], Mod[#, 4] != 3 && PrimeQ[#] &]; Select[Range[1200], Divisible[(nn = #^2 + 1), p] && ! Or @@ Divisible[nn, ps] &] (* _Amiram Eldar_, Aug 16 2019 *) %o A248527 (PARI) isok(n) = factor(n^2+1)[1,1] == 13; \\ _Michel Marcus_, Oct 08 2014 %o A248527 (Magma) [n: n in [2..3000] | PrimeDivisors(n^2+1)[1] eq 13]; // _Bruno Berselli_, Oct 08 2014 %Y A248527 Cf. A002522, A089120, A002313. %K A248527 nonn %O A248527 1,1 %A A248527 _Michel Lagneau_, Oct 08 2014