This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248559 #9 Oct 15 2014 20:56:30 %S A248559 1,2,3,4,6,7,8,10,11,13,14,15,17,18,20,21,23,24,26,27,29,30,32,33,35, %T A248559 36,38,40,41,43,44,46,47,49,50,52,53,55,56,58,60,61,63,64,66,67,69,70, %U A248559 72,74,75,77,78,80,81,83,84,86,88,89,91,92,94,95,97,98 %N A248559 Least k such that log(2) - sum{1/(h*2^h), h = 1..k} < 1/3^n. %C A248559 This sequence provides insight into the manner of convergence of sum{1/(h*2^h), h = 1..k} to log 2. Since a(n+1) - a(n) is in {1,2} for n >= 1, the sequences A248560 and A248561 partition the positive integers. %D A248559 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 15. %H A248559 Clark Kimberling, <a href="/A248559/b248559.txt">Table of n, a(n) for n = 1..1000</a> %e A248559 Let s(n) = log(2) - sum{1/(h*2^h), h = 1..n}. Approximations follow: %e A248559 n ... s(n) ........ 1/3^n %e A248559 1 ... 0.193147 .... 0.33333 %e A248559 2 ... 0.0681472 ... 0.11111 %e A248559 3 ... 0.0264805 ... 0.037037 %e A248559 4 ... 0.0108555 ... 0.0123457 %e A248559 5 ... 0.0046066 ... 0.004115 %e A248559 6 ... 0.0020013 ... 0.00137174 %e A248559 a(5) = 6 because s(6) < 1/3^5 < s(5). %t A248559 z = 200; p[k_] := p[k] = Sum[1/(h*2^h), {h, 1, k}] %t A248559 N[Table[Log[2] - p[n], {n, 1, z/5}]] %t A248559 f[n_] := f[n] = Select[Range[z], Log[2] - p[#] < 1/3^n &, 1] %t A248559 u = Flatten[Table[f[n], {n, 1, z}]] (* A248559 *) %t A248559 Flatten[Position[Differences[u], 1]] (* A248560 *) %t A248559 Flatten[Position[Differences[u], 2]] (* A248561 *) %Y A248559 Cf. A002162 (log(2)), A248560, A248561. %K A248559 nonn,easy %O A248559 1,2 %A A248559 _Clark Kimberling_, Oct 09 2014