This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248562 #13 Oct 15 2014 20:57:25 %S A248562 1,2,3,5,6,8,9,11,12,14,15,17,18,20,22,23,25,26,28,29,31,33,34,36,37, %T A248562 39,41,42,44,45,47,49,50,52,53,55,57,58,60,61,63,65,66,68,69,71,73,74, %U A248562 76,77,79,81,82,84,86,87,89,90,92,94,95,97,98,100,102,103 %N A248562 Least k such that log(3/2) - sum{1/(h*3^h), h = 1..k} < 1/6^n. %C A248562 This sequence provides insight into the manner of convergence of sum{1/(h*3^h), h = 1..k} to log(3/2). Since a(n+1) - a(n) is in {1,2} for n >= 1, the sequences A248563 and A248564 partition the positive integers. %D A248562 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 15. %H A248562 Clark Kimberling, <a href="/A248562/b248562.txt">Table of n, a(n) for n = 1..1000</a> %e A248562 Let s(n) = log(3/2) - sum{1/(h*3^h), h = 1..n}. Approximations follow: %e A248562 n ... s(n) ........ 1/6^n %e A248562 1 ... 0.0721318 ... 0.166667 %e A248562 2 ... 0.0165762 ... 0.0277777 %e A248562 3 ... 0.0042305 ... 0.0046296 %e A248562 4 ... 0.0011441 ... 0.0007716 %e A248562 5 ... 0.0003210 ... 0.0001286 %e A248562 a(4) = 5 because s(5) < 1/6^4 < s(4). %t A248562 z = 300; p[k_] := p[k] = Sum[1/(h*3^h), {h, 1, k}]; %t A248562 N[Table[Log[3/2] - p[n], {n, 1, z/5}]] %t A248562 f[n_] := f[n] = Select[Range[z], Log[3/2] - p[#] < 1/6^n &, 1]; %t A248562 u = Flatten[Table[f[n], {n, 1, z}]] (* A248562 *) %t A248562 Flatten[Position[Differences[u], 1]] (* A248563 *) %t A248562 Flatten[Position[Differences[u], 2]] (* A248564 *) %Y A248562 Cf. A016578 (log(3/2)), A248563, A248564, A248559, A248565. %K A248562 nonn,easy %O A248562 1,2 %A A248562 _Clark Kimberling_, Oct 09 2014