cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248564 Numbers k such that A248562(k+1) = A248562(k) + 2.

This page as a plain text file.
%I A248564 #4 Oct 15 2014 20:57:56
%S A248564 3,5,7,9,11,13,14,16,18,20,21,23,25,26,28,30,31,33,35,36,38,40,41,43,
%T A248564 45,46,48,50,51,53,54,56,58,59,61,63,64,66,67,69,71,72,74,76,77,79,80,
%U A248564 82,84,85,87,88,90,92,93,95,97,98,100,101,103,105,106,108
%N A248564 Numbers k such that A248562(k+1) = A248562(k) + 2.
%H A248564 Clark Kimberling, <a href="/A248564/b248564.txt">Table of n, a(n) for n = 1..500</a>
%e A248564 (A248562(k+1) - A248562(k)) = (1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2,...), so that A248563 = (1, 2, 4, 6, 8, 10, 12, 15, 17, ..) and A248564 = (3, 5, 7, 9, 11, 13, 14, 16, ...).
%t A248564 z = 300; p[k_] := p[k] = Sum[1/(h*3^h), {h, 1, k}];
%t A248564 N[Table[Log[3/2] - p[n], {n, 1, z/5}]]
%t A248564 f[n_] := f[n] = Select[Range[z], Log[3/2] - p[#] < 1/6^n &, 1];
%t A248564 u = Flatten[Table[f[n], {n, 1, z}]]    (* A248562 *)
%t A248564 Flatten[Position[Differences[u], 1]]   (* A248563 *)
%t A248564 Flatten[Position[Differences[u], 2]]   (* A248564 *)
%Y A248564 Cf. A248562, A248563, A248561, A248567.
%K A248564 nonn,easy
%O A248564 1,1
%A A248564 _Clark Kimberling_, Oct 09 2014